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Abstract 

In an effort to calculate electrical mobilities in the free molecular regime using electrical fields that are non-

negligible, an algorithm based on the calculation of collision integrals and the two-temperature theory has 

been created and tested. The algorithm calculates the mobility based on the effective temperature of the ion 

using a 4-6-12 potential interaction with or without an ion-quadrupole potential (for the case of nitrogen 

gas). The ion’s energy is also approximated so that a relation between the effective temperature of the ion 

and the field over concentration may be given. The algorithm is parallelized and tested against experimental 

results for small ions in light gases successfully. The algorithm has also been tested in nitrogen for mid-

sized analytes at room temperature and at 100K despite the fact that the inelasticity of collisions has not yet 

been considered. At 100K, the reduction of the capture radius with the increase of the electric field is 

apparent for many of the analytes producing “humps” in the reduced mobility vs. the field over 

concentration curve. For the smallest ions, two humps are observed. One pertaining to the dispersion forces 

and a second one due to the ion-induced dipole interaction. 

Keywords: ion mobility; IMoS; high field; Collision Cross Section; two-temperature theory.  

1. Introduction 

Ions in the gas phase can be separated by means of their electrical mobility. The main empirical method of 

separation uses a well-known electric field that accelerates the ions through a buffer gas. Eventually, the 

ions reach a drift velocity 𝑣𝑑 that can be related to the electrical mobility 𝐾 and electrical field 𝐸 

as(McDaniel & Mason, 1973; Viehland & Viehland, 2018): 

 𝑣𝑑 = 𝐾𝐸 (1) 

Experimentally, it is reasonably simple to obtain the value of mobility for an ion of any shape making the 

technique very useful to separate ions. Obtaining the mobility theoretically or numerically is quite a difficult 

task as the mobility depends on a large number of parameters, including shape, gas density, gas temperature, 

ion-neutral potential interaction, field employed as well as the mass of both the ion and the gas or even the 

center of mass and moment of inertia of the ion gas pair. 

In an effort to improve the theory and numerical calculations of electrical mobility, the authors created a 

suite of algorithms named Ion Mobility Spectrometry Suite (IMoS) that uses all-atom models and a 

multitude of potential interactions to calculate mobility(Coots, Gandhi, Onakoya, Chen, & Andaluz, 2020). 

The calculations were all based on the assumption that the drift velocity was much smaller than the thermal 

velocity of the gas, or seemingly that interaction happened for vanishing fields (𝐸 → 0). However, there 

are many recent and old instruments where this condition is stretched or is not at all valid. For example, 

technologies like Differential Mobility Spectrometry (DMS), Field Asymmetric Waveform Ion Mobility 

Spectrometry (FAIMS) or T-wave make use of fields over concentrations than can exceed hundreds of 

Td(Dodds & Baker, 2019; Gabelica & Marklund, 2018). Even under some circumstances, the Differential 

Mobility Analyzer (DMA) can reach tens of Td(Rus et al., 2010). The effect of high fields on mobility is 

complicated and many times it cannot be neglected.  

In this technical note, the authors make use of the two-temperature theory to create an additional algorithm 

to IMoS that provides calculations at high fields(V. Gandhi, 2022; Viehland & Mason, 1975, 1978). The 

two-temperature theory, as its name suggests, assumes that, due to the ion’s heating, its effective 

temperature increases over that of the gas in a fashion directly related to the field over concentration. The 

calculation is based on approximations to the moments of the Boltzmann equation, which have been 

implemented in the code up to the fourth approximation(V. Gandhi, 2022).  

The algorithm comes with a modified manual that explains how to perform these calculations followed by 

typical examples which have been added to the supplementary information. The method has been tested 
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previously for all-atom models in light gases successfully providing very good agreement with experimental 

results(V. D. Gandhi & Larriba-Andaluz, 2021). While the method can also be applied to heavier gases like 

nitrogen or air, any possible inelasticity that will arise from the collision is not accounted for at this time. 

This inelasticity is expected to be important only at high fields, and as such, an approximation can still be 

made without incurring in excessive error, in particular when a correction is made to account for it. A brief 

explanation of the two-temperature theory is provided below with a comparison of the results for different 

ions in helium and nitrogen.  

2. Theory 

If the ion’s velocity distribution was known for a particular applied electric field in a gas of density 𝑛 and 

temperature 𝑇, it would be straightforward to calculate the drift velocity and hence the mobility by just 

taking the appropriate average. In momentum transfer theory, the ion’s velocity distribution 𝐹 is many times 

assumed, as in the work of Epstein, Mackowski, or Rosner(Epstein, 1924; Garcia‐ Ybarra & Rosner, 1989; 

Mackowski, 2006). The distribution is then linearized (Chapman-Enskog’s approximation(Chapman & 

Cowling, 1970)) and the drag force/mobility is calculated. However, one of the assumptions is that the ion’s 

velocity is very small, and that the ion’s temperature is the same as that of the gas. The approximation is 

therefore only valid at low to vanishing fields and for masses of the ion that are large compared to the mass 

of the gas. In the case of ions at high velocity or under the effects of strong fields, the momentum transfer 

theory assumption of the distribution breaks. In order to calculate the ion’s distribution, or a moment of it, 

the Boltzmann equation must be solved by assuming a different (and higher) temperature for the ion(Kruger 

& Vincenti, 1965): 

 
𝑞𝑒𝐸

𝑀𝑛

𝜕𝐹

𝜕𝑧1
= ∫ ∫ ∫(𝑓′𝐹′ − 𝑓𝐹)𝑔 𝑏𝑑𝑏𝑑𝜖𝑑𝑐 (2) 

Here, 𝑀 and 𝑞𝑒 are the mass and the charge of the ion, respectively, 𝑓 is the gas velocity distribution 

(assumed Maxwellian), 𝑔⃗ = 𝑧 − 𝑐 is the relative velocity vector with 𝑧 = (𝑧1, 𝑧2, 𝑧3) and 𝑐 being the 

velocity of the ion and gas respectively and where 𝑑𝑐 stands for 𝑑𝑐1𝑑𝑐2𝑑𝑐3. 𝑏 is the impact parameter and 

𝜖 is the intrinsic rotation angle. The collision term on the right-hand side describes the typical replenishment 

and extinguishment of velocities of ions of class 𝑧𝑖 through collisions with the gas summed over all possible 

gas velocities and orientations. Several assumptions have been made to arrive at eq. (2), being the most 

significant that the ion does not perturb the gas Maxwellian distribution, that the collisions are assumed 

translationally elastic, and that the ion density 𝑁 is much smaller than that of the gas 𝑛. In the case of the 

two-temperature theory, the condition imposed on the solution is that the temperature of the ion might be 

different from that of the gas due to heating. The distribution can be approximated by: 

 𝐹 = 𝐹(0) ∑ 𝑎𝑝𝜙𝑝𝑝 = (
𝑀

2𝜋𝑘𝑇𝑏
)

3

2
𝑒

− 
𝑀(𝑧)2

2𝑘𝑇𝑏 ∑ 𝑎𝑝𝜙𝑝𝑝  (3) 

Here 𝐹(0) is the zero-basis distribution and the sum represents an infinite sum of orthogonal functions 𝜙𝑝 

and coefficients 𝑎𝑝. Note that the basis function depends on a base temperature 𝑇𝑏 ≠ 𝑇. This temperature 

normally is assumed to be the ion’s temperature in the lab frame of reference. While the distribution itself 

is difficult to calculate, approximations to moments of the distribution can be obtained through 

recursiveness relations of the orthogonal functions - Burnett functions in the case of the two-temperature 

theory- whose averages are related to the moments of the distribution. The mobility can therefore be 

calculated through the velocity moment of the distribution at different levels of approximation. For the first 

approximation, the calculation yields the Mason – Schamp equation (Viehland & Mason, 1975): 

 〈𝐾〉𝐼 =
3

16

𝑞𝑒

𝑛
(

2𝜋

𝜇𝑘𝑇𝑒𝑓𝑓
)

1

2 1

𝛺̅𝑇𝑒𝑓𝑓
(1,1)

 (4) 
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Where 𝜇 is the reduced mass, 𝑘 is the Boltzmann constant, 𝑇𝑒𝑓𝑓 is the effective temperature and 𝛺̅𝑇𝑒𝑓𝑓
(1,1) 

is the averaged momentum collision integral calculated at the effective temperature and normally referred 

to as the Collision Cross Section (CCS). The effective temperature is related to 𝑇𝑏 through the relation: 

 𝑇𝑒𝑓𝑓 =
𝑀𝑇+𝑚𝑇𝑏

𝑀+𝑚
 (5) 

 
Figure 1. IMoS v1.12 interface with the Coronavirus Protomer plotted. 

Higher order approximations may also be obtained by adding a series of corrections that depend on even 

powers of the field over the concentration (𝐸/𝑛), so that the mobility is a symmetric function of the field. 

For example, for the 4th approximation: 

 〈𝐾〉𝐼𝑉 = 〈𝐾〉𝐼 (1 + 𝛼0 + 𝛼1 (
𝐸

𝑛
)

2
+ 𝛼2 (

𝐸

𝑛
)

4
+ 𝛼3 (

𝐸

𝑛
)

6
) (6) 

Here the 〈𝐾〉𝐼 represents the first approximation (eq. 4) and the 𝛼𝑖 coefficients are convoluted functions of 

collision integrals 𝛺̅𝑇𝑒𝑓𝑓
(𝑙, 𝑠). The collision integrals in general are given by(Mason & Schamp Jr, 1958): 

 𝛺(𝑙, 𝑠)(𝑇𝑒𝑓𝑓) =
2

(𝑠+1)!
(

𝜇

2𝑘𝑏𝑇𝑒𝑓𝑓
)

𝑠+2

∫ 𝑒
−(

𝜇

2𝑘𝑏𝑇𝑒𝑓𝑓
)𝑔2

𝑔2𝑠+3𝑄(𝑙)(𝑔)𝑑𝑔
∞

0
 (7) 

 𝑄(𝑙) = 2𝜋 (
2(𝑙+1)

2𝑙+1−(−1)𝑙) ∫ (1 − cos𝑙 𝜒(𝑏))𝑏𝑑𝑏
∞

0
 (8) 

Where 𝜒 is the deflection angle of the gas molecule as it interacts with the ion. This deflection angle depends 

on the potential interactions between ion and gas which must be calculated numerically(Mesleh, Hunter, 

Shvartsburg, Schatz, & Jarrold, 1996). However, once the deflection angle is obtained for a sufficient 

number of trajectories, any collision integral, in particular the momentum transfer CCS pertaining to the 

first approximation, may be calculated. To obtain the 𝛼𝑖 coefficients and higher order approximations, an 

ancillary relation between the base temperature 𝑇𝑏 (or 𝑇𝑒𝑓𝑓) and 𝐸/𝑛 is needed. This relation can be 

obtained by solving the ion’s energy moment, which can also be solved at different degrees of 

approximation. Assuming that the base temperature is related directly to the ion’s energy, a general 

expression can be written as(V. Gandhi, 2022; Viehland & Mason, 1975, 1978): 

 
1

2
𝑀〈𝑧2〉 =

3

2
𝑘𝑇𝑏 =

3

2
𝑘𝑇 +

1

2
𝑀〈𝑧〉2 +

1

2
𝑚〈𝑧〉2(1 + 𝛽) (9) 
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and where 〈𝑧〉 = 𝑣𝑑 = 𝐾𝐸 is the drift velocity and 𝛽 includes corrections from higher approximations. Eq. 

(9) is sometimes referred to as the Wannier equation when 𝛽 = 0(Wannier, 1953). The Wannier expression 

provides a clear account of what the ion’s energy entails. 
3

2
𝑘𝑇𝑏 refers to the ion’s total translational energy 

and includes the macroscopic kinetic energy from the field 
1

2
𝑀〈𝑧〉2 =

1

2
𝑀𝑣𝑑

2. On the other hand,  
3

2
𝑘𝑇𝑒𝑓𝑓 =

3

2
𝑘𝑇 +

1

2
𝑚〈𝑧〉2 corresponds to the translational molecular energy which includes the equilibrium energy of 

the gas bath plus a collisional term that causes the ion to heat up, 
1

2
𝑚〈𝑧〉2. Hence the effective temperature 

is the expected thermodynamic temperature of the ion. Finally, the effective energy can be related to the 

relative kinetic energy of the ion and the gas, providing a second perspective to its meaning. Overall, eq. 

(6) can be calculated together with eq. (9) to provide the desired level of approximation for the calculation 

of mobility. An important characteristic of the two-temperature theory is all approximation terms are 

bounded, meaning that any degree of approximation converges for the full range of the field-over-

concentration 𝐸/𝑛, including the first approximation, and where the merit of higher approximations is to 

obtain greater accuracy(McDaniel & Mason, 1973).  

A particular issue of concern with the two-temperature theory is the assumption of elastic collisions between 

gas and ion in the translational sense (relative kinetic energy is kept constant). While the theory is expected 

to work well for monoatomic gases, the expectancy is that collisions with polyatomic gases will be 

somewhat inelastic as some of the extra energy of the ion (which is heated up) can go into the internal and 

rotational degrees of the gas molecule and thus, the relative kinetic energy is not kept constant. In such 

occurrences, a correction must be made to the equations. These corrections have not been yet implemented 

as they can only be obtained experimentally at this time and an error is expected for polyatomic gases and 

high fields of a few percent.  

3. Methods 

 
Figure 2. Reduced Mobility as a function of the field-over-concentration (𝐸/𝑛) for three small ions in He. The markers 

correspond to experimental data while the solid lines correspond to the fourth approximation of the two-temperature theory. For 

𝐶𝐻5
+, dashed lines show the first through third approximations. 

IMoS v1.12 interface is shown in Figure 1(Larriba-Andaluz, Fernandez-Garcia, Ewing, Hogan, & 

Clemmer, 2015; Larriba & Hogan Jr, 2013a, 2013b; Shrivastav, Nahin, Hogan, & Larriba-Andaluz, 2017). 

In it, various calculations pertaining to the prediction of mobility can be performed(Donald & Prell, 2019). 

Most of such calculations are parallelized and can be run on a supercomputer with ease, greatly increasing 

performance. The new additional calculations can be found at the center of the Calculation pane pertaining 

to high-field effects. The program loads an all-atom structure like the one depicted in Figure 1. It then 

calculates the deflection angle of a selected number of gas trajectories (default is 900000 trajectories) at a 

fixed gas temperature and at an effective temperature of the ion. To calculate the angle, a 4-6-12 potential 

interaction is assumed which includes the ion-induced dipole potential for the gas of choice and the 
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pertaining Lennard-Jones interactions that are typical of the Trajectory Method(Mesleh et al., 1996). If 

nitrogen is chosen, there is also the possibility of adding the ion-quadrupole potential interaction(Kim et 

al., 2008). Once the deflection angle is calculated, the program then obtains the necessary 𝛼𝑖 coefficients 

up to the fourth approximation. It also calculates the relation between 𝑇𝑒𝑓𝑓 and 𝐸/𝑛  by determining the 

ion’s energy moment, which is obtained at the same accuracy as the mobility. The calculation is normally 

carried out for a range of effective temperatures to provide a relation between the ion’s mobility and the 

field-over-concentration (𝐸/𝑛). The results are then provided in an output file, including the CCS. The 

algorithm comes with a manual that describes the calculations in detail, including how to create the initial 

files and provides several examples of how to do the high-field calculations through the interface or via a 

submission to a supercomputer through a non-interface version. 

It is important to mention that the calculation does not include any possible inelasticity effects at this 

time(V. Gandhi, 2022; Larriba-Andaluz, 2021), which are expected to be included at a later stage. In 

principle, as the relative energy of ion and gas increases, the expectancy is that the collisions become 

inelastic in the translational energy sense, providing energy to internal degrees of freedom. For monoatomic 

gases and light ions, this is not particularly important as the ion will rapidly arrive at an equilibrium 

temperature and no modes of escape (the gas does not have internal degrees of freedom) are available except 

for perhaps radiation. For polyatomic gases, on the other hand, translational energy can be lost into the 

degrees of freedom of the gas molecule (which is at the gas temperature), providing inelastic mechanisms 

that will affect the momentum transfer.   

4. Results and Discussion 

  

  
 Figure 3. Reduced Mobility as a function of field over concentration of several different ions in nitrogen at gas temperature of 

300K. The values correspond to the numerical calculations of the fourth approximation to the two-temperature theory. 
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The two-temperature theory for all-atom models and light gases has been tested previously for small ions 

in light gases. The theory is able to reproduce the results quite well even for the first approximation without 

any type of optimization of the Lennard-Jones potentials. Figure 2 reproduces some of the results for small 

ions in He where the reduced mobility is plotted as a function of the field over concentration for three ions. 

The markers represent experimental results while the solid lines represent the fourth approximation to the 

two-temperature theory. For the 𝑁𝐻3
+ ion, approximations one through four are shown, and where the best 

agreement between experiments and theory occurs for the fourth approximation. However, for the range of 

field over concentration shown, there is little difference between the third and fourth approximation, hinting 

at only small gains for even higher approximations. 

  

  
Figure 4. Reduced Mobility as a function of field over concentration of several different ions in nitrogen at gas temperature of 

100K. The values correspond to the numerical calculations of the fourth approximation to the two-temperature theory. Noteworthy 

is the double hump that can be observed in some of the ions. 

While successful for small ions in light gases, the algorithm can run at different fields for different gas 

temperatures for heavier gases very efficiently and for which very few experimental results exist. To 

showcase the results, a series of tests on typical analytes in nitrogen have been performed. The results from 

the 4th approximation are shown in Figure 3 for a gas temperature of 300K. Reduced mobility is used on 

the ordinate axis which is generally given by: 

 𝐾0 = 𝐾 (
𝑃

101325
) (

273.15

𝑇
) (10) 

Where 𝑃 and 𝑇 are the pressure and temperature of the gas. How the mobility of ions behave at high fields 

has been studied extensively, where the 𝐾(𝐸/𝑛) profiles display a sustained increase (type A ions), an 

increase followed by a decrease (type B ions) or a sustained decrease (type C ions). Here we can observe 
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some of these behaviors. For example, the ions shown in Figure 3A and 3C follow a type C behavior with 

the reduced mobility becoming lower with an increase in the field over concentration. This is the typical 

behavior of medium to large ions at room gas temperature. The explanation of the reduction in reduced 

mobility has to do with the increase in momentum transfer due to the increase in relative kinetic energies 

at high fields. Other behaviors however are apparent for other cases(V. D. Gandhi & Larriba-Andaluz, 

2021). Figure 3D showcases a series of smaller ions (higher reduced mobilities) that contain at least one 

visible hump and can be difficult to classify as they are a mix between type C and type B ions where the 

reduced mobility at some point increases and then decreases. A very clear example of type B ion is 

tetramethylammonium (TMA) in Figure 3B. The reason for the hump has been explained previously and is 

related to the ion-induced dipole potential(V. D. Gandhi & Larriba-Andaluz, 2021). The idea is that at low 

fields, the ion-induced dipole interaction is stronger compared to the relative kinetic energy and is able to 

capture gas molecules at moderate distances compared to the physical radius of the molecule. As the field 

increases, the relative kinetic energy increases, reducing the effective capture radius of the ion and 

increasing the mobility in the process. Eventually, at high fields, the effect of the interaction is negligible 

compared to the kinetic energy and the reduced mobility decreases due to higher momentum transfer owing 

to higher energetic collision (type C behavior). 

 
Figure 5. Benchmark Comparison for the High-Field 4-6-12 method as well as the regular TMLJ method for a 3.6Ghz cpu using 6 

cores. 

Given that the Trajectory Method has the ion-induced dipole potential (proportional to 𝑟−4) as well as the 

induced dipole-induced dipole potential (dispersion force, proportional to 𝑟−6), one should expect both 

effects to have a contribution to the enhanced capture radius. At 300K, however, it seems clear that the 

effect is mostly only visible for the ion-induced potential interaction as previously demonstrated in (V. D. 

Gandhi & Larriba-Andaluz, 2021).  Figure 4 shows the reduced mobility as a function of the field over 

concentration for a gas temperature of 100K. While the largest ions seem to still behave as type C ions, as 

shown in Figure 4B, smaller ions Figure 4 A, B, and D have quite different behaviors. Many of the ions 

show two humps instead of one. Once again, the simplest ion to follow is TMA. The first drop in the reduced 

mobility (0 to 30Td) corresponds to an increase in momentum transfer due to an increase in field. As 30Td 

is reached, part of the effective capture radius due to 𝑟−6 potential is reduced leading to the first hump 

between 30 and 70Td. After 70Td, the second part of the effective capture radius due to 𝑟−4 potential begins 

to shrink leading to the increase in reduced mobility. The ion becomes the most mobile at 115Td after which 
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hard sphere momentum transfer dominates. This is the first time that a double hump (almost a triple hump 

if the first portion is considered) is shown in a high field calculation for polyatomic ions with such detail. 

We will label this type of interactions as type D to follow with previous nomenclature. This new behavior 

of the ion brings about different possibilities of separation that where not possible previously. For example, 

Naphthalene and Choline at 100K are barely separable at zero field. However, their behavior is very 

different as the field increases, having the largest separation at 80Td as shown in Figure 4D. Similarly, 

phenanthrene and anthracene are difficult to separate at low mobility, but the separation becomes larger at 

40Td. Note that these curves have been obtained numerically assuming a 4-6-12 interaction only. It may be 

possible that higher-order interactions like ion quadrupole interaction, neutral dipole interactions or even 

quantum interactions may also be observable at such temperatures that could lead to somewhat different 

curves. Furthermore, the use of even heavier gases with larger polarizabilities (such as 𝐶𝑂2) may lead to 

even more clear separations between the different potential interactions. It is also expected that the 

inelasticity of the collisions, which is not yet considered here may have an impact at high fields. 

Regarding the speed of the new high-field algorithms, Figure 5 shows the benchmark comparison for 

several ions. The algorithm performs in general around 10-20% percent faster than the regular 4-6-12 TMLJ 

algorithm for the same cases (zero field and room temperature). The improvement in speed has to do mostly 

with more efficient coding which will eventually be added to the regular TMLJ subroutine. After the 

deflection angle calculation is completed, adding results from higher-order approximations is nearly 

instantaneous for any ion.  

The code can be downloaded free of charge1. 

5. Conclusions 

A parallelized tool to calculate ion mobility at high fields using the two-temperature theory has been 

implemented in the program IMoS. The resulting theory has been tested against available experimental data 

for small ions in light gases yielding quite promising results. Calculations for heavier gases and different 

gas temperatures has also been implemented even though there is insufficient experimental data to fully 

assess the results. The results however are within what should be expected for room temperature gases, 

with the caveat that no inelasticity is considered for the time being. Testing the algorithm at lower 

temperatures produces some very interesting variations in the mobility, including double humps in some of 

the small ions. Closer inspection reveals that each of the humps pertains to the reduction of the capture 

radius, starting first with that of the dispersion forces and followed by the ion-induced dipole interaction. 

Other interactions not considered here may have their own effect so it is crucial that empirical results are 

provided before the calculations can be further optimized at these temperatures. However, the fact that 

different interactions can be observed for different fields at low temperature has many implications 

including separations of observable interactions and quantized effects. Once sufficient data is available, the 

study of the interactions may be improved substantially.  
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An updated manual of IMoS v1.12 with examples of how to run the algorithm for high-field calculations. 
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Figures 

Figure 1 

 

Figure 1. Representation of a gas-ion trajectory in 3D. The gas molecule with the velocity 𝑔⃗ is being deflected by an 

angle 𝜒. The trajectory plane (blue) makes an angle 𝜖 with respect to a fixed reference plane (red). (Adapted from 

Vincenti and Kruger74, and Larriba and Prell9). 



 

Figure 2 

Figure 2. The percentage difference between the first and the higher order approximations (for the hard sphere model) 

as a function of the dimensionless parameter ℰ∗ at different mass ratios (A) 𝑀/𝑚 =  0.1, (B) 𝑀/𝑚 =  0.5, (C) 

𝑀/𝑚 =  1, (D) 𝑀/𝑚 =  4, (E) 𝑀/𝑚 =  100, (F) 𝑀/𝑚 =  1000. The y-axis is given by % 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 =

 
(〈𝑣𝑑〉𝑥−〈𝑣𝑑〉𝐼) × 100

〈𝑣𝑑〉𝐼
. Calculations were performed in IMoS 86-89. 



 

Figure 3 and 4 

 

Figure 3. CCS ratios for 𝑂+ ion in helium gas as a function of 𝐸/𝑛. The dashed and solid lines represent the CCS 

ratios for the Maxwell and 4-6-12 potential approximation model respectively.  

Figure 4. C* ratios for different ions in helium gas as a function of 𝐸/𝑛. The dashed line represents the C* ratio for 

the Maxwell model. The C* ratio becomes closer to 1 at low 𝐸/𝑛 as the ion size increases. 



 

Figure 5 

Figure 5. The percentage difference between the first and the higher order approximations (using the 4-6-12 Lennard-

Jones trajectory method) as a function of the dimensionless parameter ℰ∗ at different mass ratios (A) 𝑀/𝑚 =  0.1, 

(B) 𝑀/𝑚 =  0.5, (C) 𝑀/𝑚 =  1, (D) 𝑀/𝑚 =  4, (E) 𝑀/𝑚 =  1000. The y-axis is given by % 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 =

 
(〈𝑣𝑑〉𝑥−〈𝑣𝑑〉𝐼) × 100

〈𝑣𝑑〉𝐼
. Figure 5F shows the experimental and the calculated mobility for 𝑂+, 𝐻2𝑂

+ and 𝐶𝐻5
+ in helium as 

a function of 𝐸/𝑛. For 𝐶𝐻5
+, the mobility using different approximations is illustrated. Calculations were performed 

in IMoS 86-89. 
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