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A Critical Review of the two-temperature theory and the derivation of
matrix elements. High field lon mobility and energy calculation for all-

atom structures in light gases using a 4-6-12 potential.

lon mobility has become a ubiquitous tool in many aspects of Analytical Chemistry
due to its ability to separate compounds in the gas phase prior to feeding them to a
Mass Spectrometer. To understand how this complex separation occurs, it is
necessary to thoroughly explain the physics behind the ion-gas interaction. In
particular, this manuscript aims to describe the physics behind the collisions at high
fields using the two-temperature approximation. The two-temperature theory has
been recently employed to describe the mobility of polyatomic ions quite
successfully and thus a proper account is warranted. A concise description is
provided along with rigorous mathematical arguments behind its success at
predicting the ion’s drift velocity. Moreover, a thorough procedure for obtaining
the equations (including the matrix elements) for higher-order mobility
approximations is also provided with high detail, making this work suitable for
beginners and experts in ion mobility. In particular, a discussion is brought forth
on the choice of the base temperature and its relation to both the effective
temperature and the drift velocity of the ion. A comparison between a 4-6-12
potential and the Maxwell model is made, pointing at the possible errors of using
the Maxwell model for low- and high-field calculations. Using our in-house
algorithm IMoS, successive approximations up to the fourth are tested against
previous ones and against experimental results, showing both, asymptotic

convergence, as well as a good agreement for monoatomic gases and small ions.

Keywords: Two-temperature theory, ion-mobility, high-field, higher-order

approximation, Collision Cross Section

Introduction

lon Mobility Spectrometry (IMS) is maturing at an enormous rate, showing that gas phase
separations are becoming key in analyte characterization'. This recognition is not
unfounded, as the technique has been shown to separate compounds such as isomers and
isotopomers, that cannot be resolved by Mass Spectrometry alone (MS)°”. As instruments

improve their resolution, some separations are no longer well-understood by the



concurrent theory and new avenues must be explored and reasoned, while older ones may
need to be dusted and improved?® °.

This work falls on the latter aspect, where the main goal is to describe how and
why the two-temperature theory is an acceptable approach, showing how to obtain the
matrix elements (up to the fourth approximation) regardless of the orthogonal functions
that are used. This laborious effort will ease with the calculation of collision integrals for
other theories and orthogonal sets (e.g., Hermite polynomials and the three-temperature
theory). A major reason is that full derivations of the elements have never been shown in
detail and are only tabulated to the second approximation® 1. A variation of the
truncation method brought forth by Mason and Viehland is also shown as well as a novel
way of obtaining the ion’s energy that greatly speeds up the calculation process.

We have previously shown that the two-temperature theory is more than capable
of describing high-field (and or temperature) behavior of all-atom models in light gases?.
The results show good behavior even for the first approximation although improvements
are observed when higher-order approximations are included (up to the fourth). The main
reason for the success of the two-temperature theory relies on two interrelated features.
The first one considers that the ion’s velocity distribution is a function of a temperature
which varies with E/n and is different from that of the gas while the second one, a
consequence of the first, is that all higher-order terms are bounded (something not
possible in the one temperature theory)® so any approximation is valid at all fields. The
assumption is that the distribution is still nearly Gaussian even at high fields, and that the
ion has been accelerated to a drift velocity and has been heated to an effective temperature
due to collisions with the gas at high relative speeds*?

The manuscript is divided into two parts. First, an introduction to the theory

together with an explanation of the mobility calculation and accompanied by a description



of how to obtain the matrix elements (the full calculation of all necessary elements is
provided in the supplementary information) as well as how to obtain the ion’s energy (or
the relation between field over gas concentration (E /n) and the ion’s temperature). This
is followed by a discussion on the collision integrals for hard spheres and 4-6-12
potentials and how their ratios vary from the normally accepted Maxwell model, and
finally by a comparison between the different approximations as a function of the electric

field for different mass ratios.

Theoretical description

To introduce the concept of the two-temperature theory, one should start by describing
the series of approximations that must be done for the Boltzmann equation employed to
be valid'®. The first and most important is that the ion is small enough that it does not
perturb the gas. Other approximations are that collisions are assumed to be elastic, that
the gas distribution may be considered Maxwellian (independent of position and time and
fixed at a given temperature), and that the number-density of the ions, N, is small enough
that ion-ion interactions may be neglected. Under these assumptions, the Boltzmann
equation for an ion’s velocity distribution F(z;) in the presence of a neutral gas with

distribution (f (c;) is given by 11 14-16;

Al Jff( 'F' — fF)g bdbded (1)
ot Yox Yoz " J'F ~ JF)g bdbdede;

In the equation above, n is the number-density of gas, z; and c; are the ion and gas
velocities respectively while g; = z; — ¢; is the relative velocity, b is the impact
parameter, € is the intrinsic rotation angle and x;, a; and t are position, acceleration, and
time. In equation (1), we initially assumed that the ion’s velocity distribution depends on

position and time and that the acceleration is general. The term on the right corresponds



to the collision term, where only interactions between gas and ion are accounted for. The
collision term represents the replenishment (coming from prime sources) and
extinguishment of ions of class velocity z; through collisions with gas molecule velocities
between c; and c; + dc; (where dc; = dc;dc,dcs). We shall simplify the equation even
further by assuming that the distribution does not depend on position x; or time t and that
the acceleration a; only depends on a constant field value E (relaxation effects are
neglected) in the direction of ion movement z; = w. Under such conditions, the equation
becomes more manageable!’: 18

ek OF _ j j f (f'F' — fF)g bdbded (1b)
Mnaw f fF)g edc;

where e is the elemental charge (assuming the ion is singly charged) and M is the mass
of the ion. Despite the simplifications, the equation is still difficult to solve even when
the gas and the ion are considered spherical atoms” 8, The main reason is that the term

(f'F'" — fF) is dependent on the ion-gas interaction. In general, an assumption generally

relies on choosing a solution dependent on orthogonal polynomials as *°:

3
2

F_F(O)Z _( M ) _%Z (2)
= pap¢p— kT, e papq.')p

where ¢,, are orthogonal functions, a,, are unknown coefficients and F(© s the basis or
zeroth function chosen for the two-temperature theory. k is the Boltzmann’s constant and
T, is a temperature that needs to be determined (generally called the base temperature)
and which is normally equated to the ion’s lab reference of frame temperature and is
different from the gas temperature T. Note that the choice of F(® is important. If the
choice of the basis function was exactly F, then the sum of orthogonal functions would

be one, not requiring one to obtain the a,, coefficients. A close choice would allow the



least number of coefficients to be calculated in order to get a solution 2022,
Even with eq. (2), solving eq. (1b) is not possible normally 2-2°. An option is to

resort to calculating moments of F. This is obtained by multiplying eq. (1b) by a function

of the ion’s velocity 1/;1(2 and integrating over all possible velocities z;, i.e., (l/)l(,’;l))Av =

fFlpl(;)dzl-, obtaining average quantities (moments) and leading to %

eE [0y
ow

e —> = (Tt av: 3)
Av

where 7 is the operator given by:

i) = | | | £ (6 —wiy)) gbdvaede, @

To arrive at eq. (3) from (1b), integration by parts and the inverse collision
property have been used (refer to the supplementary information of this paper or egs. B.4-
B.9 in ref® or ref?® to see the calculation) as well as the use of the basis function

approximation (eg. (2)). A solution to eg. (3) may be obtained by choosing appropriate

orthogonal functions 1,[1(” and where the practicality of the solution heavily relies on how

Im?
close the orthogonal functions are to eigenfunctions of the operator J. Commonly
employed for the two-temperature theory are the Burnett spherical polar functions given

by 217, 28:

l

l(;l) — (&ZF)E P, (K) s (M) e'm® (5)

2kT), |z| l+% 2kT),

Here P, are the Legendre polynomials and Sl(:)z are the Sonine (associated Laguerre)

2

polynomials. The Burnett functions happen to be the eigenfunctions of the operator J for

the Maxwell Model (r~* potential model), and hence a suitable candidate?. Note that T,



is the same temperature used in the basis function in order to utilize the integral

superposition method® 3!, The Burnett functions are orthogonal to the inner product:®:

M(z)?

() = [ & 0 ulydz = [ FOYLp dz = a8, ©

With + describing complex conjugation and where the basis function F(© appears as the

required weight. For two functions formed using eq. (5), the inner product yields'® 32:
C(1+s+3) U+ mD)!
> !

( l(r:l) ) z()fz)) = 3 Slpsmqars (7)
2L + 1)s! F(i) (L — |m])!

where T and &;,, indicates Gamma and Kronecker delta functions respectively. One must
now make an informed guess regarding what the general solution to the operator in eq.
(3) might be. Since it is expected that the gas-ion interaction to be close to the Maxwell

model®* 3, the operator may be expanded using Burnett functions®: *:

lel(rrr? = Z ars(l) 1/J1(fr3 (8)

N

where the sum of s goes from 0 to infinity. The choice of eq. (8) stems from the fact that

for the Maxwell model and the one-temperature theory, Jyaxmwen®’y = A%, where

Im Im?
/15” and 1,01(,:3 are the eigenvalues and eigenvectors of the Jyaxwenr Operator. For other
cases, one may assume that the a,;(1) are matrix elements that are larger the closer they
are to the diagonal terms a,.-(1) %'. For the two-temperature theory using the Maxwell
model, the off-diagonal terms are not zero although they vanish for s > r (more on this

below). Using the orthogonal relation and eq. (8), the matrix elements may be given by:



(), av)

a.s(1) = W
m’ m

9)

The matrix elements happen to be independent of the m index which can be dropped from
the Burnett functions (m = 0)*®. Making use of the recurrence relations of the Sonine

and Legendre polynomials?®:

d

asﬁ") () = =5V (%) (10a)
2 _
Tl ) = xR ) — s () (10b)
n dx
S () — xSV () = (p + ST, () (10¢)
2n+ 1D)xP,(x) —(n+ 1Py (x) = nPy_1(x) (10d)

as well as eq. (8), eq. (3) may be written as (dropping the subscript Av and the index m)®:

(1+3) Y. as@@O) =€t (1+ 3+ )W - e+ D] a

where wl(s) = 0 for any negative index, 11;50) = 1, and where3® 3

1
2

* = i) (zim) a2

How to arrive at eg. (11) from eq. (3) and the recurrence relations are shown in

the supplementary information. In eq. (11), only the matrix elements and the temperature
T, are unknown. Eq. (11) is an infinite set of coupled equations with an infinite sum.
Given that direct averages of the Burnett functions cannot be obtained without explicitly

knowing F(z;) (except for very particular cases®* 3-4%) an iterative form is sought. To



deal with the infinite sum, the procedure is to add one additional term over those of the
Maxwell model (s > r = 0) to the sum for every higher order approximation %%, As

such, the truncation scheme may look like:
(14+2) an @), = e[t (143 +7) @0t — W+ D@WETm] - (14

)2 e @) = (143) T2 () D) rs (13)
where the subindex n stands for the order of approximation (not to be confused with the
gas density). Note that the summation index is kept from s = 0 to n + r — 1, so that all
terms up to s = r always appear and the upper summation terms are subsequently added
for higher approximations. Mason has tried a different approximation type by using n —
1 instead of n on the third term (first summation) on the right-hand side with similar
success 1. The last term of the right-hand side has an approximation n + r —s. The
reason for this particular choice lies on the idea that each approximation contains only
one additional (E /n)?* term in their sum*!. Note also that the minimum order is 1 for the
terms with approximation n — 1 (there is no 0" approximation).

To obtain the ion’s mobility, the Burnett function (from eq. (5)) @)=

1/2

1/2
<(2£4—Tb) / w> = (T’V;b) v, may be used and where v,; = KE is the average drift velocity

of the ion, being K the mobility. Using this equation and Eq. (13), the first approximation

may be given by:

(31)

ago(1)

aoo(1)<¢§°))z =& or K, = (14)

where ayo(1) would need to be calculated but it is dependent on the base temperature
whose value needs to be provided. Advancing the value of the matrix element (to be

calculated below), the typical Mason-Schamp expression appears 6 26:



K — 3e 2m 1 (15)
= 16n ,ukTeff .Q(l'l)(Teff)

where g is the reduced mass and QX (T, ;) is the momentum transfer collision integral

calculated at the effective temperature T,z which may be related to T, through 9,44,

MT + mT,

Tert = vm (16)

The physical importance of T, s, will be described below. Before continuing to
higher-order approximations, it is important to establish a relationship between the base
temperature T, (or T,rr) and the field over concentration E/n. T, as advanced

previously, can be chosen to be the ion’s temperature in the laboratory frame, but any
other choice could have been equally valid (and perhaps more optimal for convergence)??

39,4547 \Wjith this choice, T}, is given by:
1 .3
S M(z2) = KT, a7

Eq. (17) is equivalent to (p$”) = 0. Using eq. (13) with (1) will allow us to find an

equation that establishes the relation between E /n (or €) and T},.

Higher order approximations

By repeated application of eqg. (13) one can reach higher-order approximations that may

be generally written as ®:

(K),, = (K), [ao +a (ﬁ)z +a, (ﬁf + l (18)

where the number of higher-order terms depends on the approximation n. Here, the «;

coefficients are complicated functions of the matrix elements. For example, the second



approximation may be given by (eq. (13)):

€ _a01(1)
ago(1)  age(1)

W, = WMy, (19)

Note the second term on the right-hand side (neglected in the first approximation) appears
from the summation term since it is now terminated at s =2+ 0—1 = 1. The first

approximation for the Burnett function of the second term is given by:

a10( )

(0)
PTOLLR (20)

W = — L -5 ] -

11(1)

In eq. (20), the additional last term on the right-hand side comes in this case from the

summation when s = 0. The functions in the brackets may now be given by:

1, _ (0) _a10(0)
W) = - 11(0)«0 " e (21)
W) = 0(2) — W) (22)

The second term in eq. (21) comes from assuming the Maxwell condition for the first

approximation where terms s < r are added. However, having established eq. (17)

((1/)51)) = 0), then eq. (21) is no longer needed. Putting all the terms together and

simplifying, we arrive at the second approximation to the two-temperature theory:
ap1(Dago(1)  5ag;(1ay,(0)

ago(Day;(1) §6111(())(111(1) (23)
( € )2 <8a01(1)a00(1) 10“01(1)6100(1))

1+

(¢1(0)>11 = (lpfO))I

ago(D)/ \3ag(@a;; (1) " 3 ag;(0)a;(1)



or:

W@y = @), [1 + D@ ( £ )2 (§a01(1)a00(1))] (24)

ago(1)ay1(1) ago(1) 3 age(2)a;1(1)

when eq. (17) is considered. Eg. (19) now becomes an equation to establish the

relationship between E /n and T,. Note how aside from the quadratic term that depends

on the field ( ) , an additional term appears to correct the expression for mobility

00(1)

even at the zero field.
For the third approximation, we proceed in a similar way. The main equation may
be given by:

€ _ao1(1)
ago(1)  age(1)

ag, (1)

()
ey Wi (25)

WMy, -

(d’fo))m =

where the third term appears due to the fact that the summation now terminates at s =
34+ 0 — 1 = 2. The functions on the right-hand side may also include additional terms as

well due to their higher order. As such:

@, _ 5 @y 4 o] @@ oy 2D )
(! >u——an(1)[3<w0 =5 @] - e W = s P =
(1) 12( ) )
<1/J1 >I 11 (1) <¢ >I (26)
@n z (2) _f (1) _azo(l) 0) _a21(1) (1)
B = s [300670 —3 @5n| = 22 O - s i @)
@\ _ 1) azo(o)_az1(0) 1)
<¢0 >I_ 2(0) (lpl )I azz(O) azz(O) <l/)0 )I (28)
W = [0y, — ] - 208 0 29)
2 11(2) 5 3 a;1(2) 72



3

(0)
oy W (30)

<l/)§0) )=

Note that (1/)1(2)), is only a first approximation instead of a second. This is due to the
choice of reducing the approximation of the extra terms to n + r —s. If the second
approximation were used instead in eq. (25), it would bring higher powers of E /n. There
Is no particular reason to substitute the different functions (egs. (26-30)) so as to provide
the third approximation. The fourth approximation may equally be written to be:

€ _ao1(1)
ago(1)  age(1)

agz(1)
ago(1)

1
WPy, —%«/JE)), 31)

(lpl(l))lll -

(lpl(o))lv =

Higher order expressions can be easily obtained but are omitted here as they start to

become too large to handle analytically.

Ion’s energy

One of the most difficult endeavors when dealing with the two-temperature
approximation is establishing the relation between the field over the concentration E /n
and the temperature T}, (or similarly T,z¢)' 3 4953 The reason for this is that the
temperature T, is a parameter used in the base function to describe that the ion’s velocity
distribution is skewed (displaced) by the drift velocity v, and its standard deviation is
larger due to field-related heating over the thermal equilibrium with the gas 3% 4.

Choosing T, = T;,, (temperature of the ion in the laboratory frame) establishes some
important considerations. The first one is that %ka = %m(zz) so that the ion’s energy
can be directly related to T;,. One would expect therefore that calculating the ion’s energy

moment (") would be sufficient. As advanced previously the moment yields: (1/)31)) =

3 M<z?>

2 2kT}

= 0 . However, eq. (13) may still be used to provide a relation between ion



temperature and field. The degree of accuracy used to establish a relation between T}, and
E /n can be any, but it is preferred to match the order of approximation of mobility. For

example, for the first approximation:

1 1
50O ) = 0= —£r”) = 5 a10(0) W) (32)
Or:
1 a,,(0) 1
- _Eﬁzgo)h - &= ) a10(0)ago(1) (33)

To physically understand the meaning of eq. (33), the expressions of the matrix
elements (see their calculation below) must be introduced to yield a first approximation

for E /n:

E\> 128 u  k*Tepp (Tp—T 2
—_ = Q(l,l) T 34
(n) 3 M+m e? ( - ) (Terr) (34)

39.

This result coincides with the result that comes from using Wannier’s equation®

3 3 1 3 1 )
Eka=EkT+E(m+M)(W)2=EkT+§(m+M)<K>I E? (35)

This can be proven by using the solution from the first approximation to mobility (K), =

1
Mn Qoo (1)

in eqg. (35) arriving at eq. (34). For the first approximation, it can also be shown

from the relation between T, and T,r that ngeff zsz+%m(W)2 which has

important consequences®® % %6, Eq. (35), while it is only a first-order approximation to

the ion’s energy, it does provide a simple physical explanation of the two characteristic
temperatures. %M(w)2 corresponds to the total field energy required for the ion to go

from thermal equilibrium to its drift velocity®”° given it is the ion’s kinetic energy. This



value is quite large so T, can easily be in the tens of thousands of Kelvin, and it is not a

good measure of the ion’s thermodynamic temperature® €63 However, subtracting the

ion’s kinetic energy %M(w)z, the rest can be regarded as its translational thermal

molecular energy which corresponds to %kTeff and where %m(w)z, corresponds to the

thermal translational energy increase due to the higher relative velocity collisions with
the gas. In this sense, the effective temperature is the ion’s equilibrium temperature due
to the combination of the gas temperature and the effect of the field (assuming elastic
collisions)®+%7,

For the second approximation, Viehland assumes that £ can be thought of having

approximations in a similar way to the Burnett functions, e.g., &,. Viehland uses eq. (13)

for (l/)l(o)) as well as (1/;(1)) = 0 and combines them to arrive at?*:

N =

(36)

aOs(l) (s) : _ )

zgn _ Z aOs(l) (¢(S)) IZS 1 aOO(l) )n—sl
ago(1) s=1 aoo(l) L ¥ 2[ 10(0)+ nags(1) (l/)(S)) l
ago(1) s=2000(1) " 7° s

A different approach to obtain higher approximations of the ion’s energy is to use the

recursive eq. (13) relation for (l/Jél)) but assuming that € is a constant to be calculated.
This leads to a polynomial equation of powers of £2. For example, for the second

approximation:

1 1
2@ O = 0= ~£4®) a0 ~3aO@P), @)

2 1 1 2)
&n = ) a;0(0)age(1) — —aoo(l)au(o)(l/’ ) (38)

Substituting the appropriate approximations leads to a quadratic equation for £2:



AEL+BEL+C =0 (39)

With:
A= § a;,(0)
3 a1 (1)age(2)ay,(0)
_ aio(1)ay2(0)
=1t a41(1)ay,(0)
1 ay 0
C= ano(l) (am(o) - %)

The solution that is chosen for the field is the closest to that of the first
approximation as it is expected that in eq. (38) the bold term is a small correction. Using

the same process, higher-order terms may be obtained. For the third:

1 1 1
EW N = =5 a10(0) = 5 a0 ) — 5 a1z (W) (40)

And where the full expanded equation for &, has been added to the supplementary
information. Whether this method or an iterative method is employed, the relation
between T}, and E /n should be established and it is expected to have only a scaling effect
over the values of mobility as a function of the field.

It is important to note that, regardless of how which method is employed, once &€
is calculated for a particular order of approximation, its value is fixed in the expression

for mobility as different values of € would lead to different T,, — E /n relations.

Calculation of the matrix elements

At this point, the matrix elements need to be calculated to obtain detailed expressions for
mobility as a function of the field. However, the matrix elements can only be analytically

calculated for extremely simple potentials (like that of Maxwell) assuming monoatomic



ions. For the rest of the cases, the matrix elements’ expressions can be left as a quadrature
that may be integrated numerically by calculating the deflection angle®-". Aisbett
produced a general formula to obtain all the different matrix elements (see supplementary
information or refer to ref??). The formula provided by Viehland contains a small error (a
factor of 2 corrected here) that will not affect the mobility results!®. It is however
unadvisable to use the formula without prior knowledge of how the matrix coefficients
are calculated. This exercise also serves the purpose that it can be used with any other
orthogonal functions for which general formulas do not exist. The procedure of how the
calculation is performed is laid out initially, followed by explicit solutions of some of the
terms. The rest of the terms needed up to the third approximation have been added to the
supplementary information, where many of them are also explicitly calculated.

Each matrix element must be obtained using eq. (9). While the denominator is

given by eq. (7) (assuming m = 0), the numerator is given by®:

3
. . M \2 mc2
(i, aw) = (anTb 2 2nkT ffff i)

x P(2) [wfr) @ — (2')] |7 — ¢|bdbdedZdé (41)

Here, we have opted to use the more conventional vector notation instead of an index
notation. The differential dZ = dz,dz,dz; stands for a triple integral over the three
velocity directions and x stands for a regular multiplication to indicate a change of line.
It is assumed that the gas has a fixed Maxwell-Boltzmann velocity distribution (f) at
temperature T "> 3. To make eq. (41) more accessible, assuming a two-body problem, the

independent velocity variables are changed into the relative velocity g and the center of

mass velocity W:

Ny
|
ay
Il
«Q,



W=(1—e#)2+e#5 ;e =

m+M

so that the matrix elements become:

N|w

(Zl+1)s!l"(%)( Iy )%( n )

3\ \2mkT,/ \2mkT
r (l + s+ 2)
1 1\ M
ff J. f 2ka o)W+ 26357 2kT)W'g=m‘-|l-M(21?'Il"b=2kT)gz)

x PO (W +e,)|[ 0" (W + e,9) — " (W + e,9")|gbdbdedWdg  (42)

ars(l) =

Where the interpretation of the prime remains the same. Given the complexity of the

exponential in eq. (42), it is advisable to make a change of variables that will make it

quadratic:
Wy=W—f§ ;dWdg = dW,dg
where:
M(T, —T) mT,
f:e“dm—Tb ; d:MT-l-—mT.e“-i_f d;eﬂM 7

Dropping the g in W, one arrives at:

(2l+1)s!F(%) Mo, m d
(l+5+%) (Zﬂka) (anT)

f]]] (zaier) W~ (7))

< YO+ ag) (W + e, + £3) ~ 97 ([ + 0,5+ 19)|gbabdeaidg (43)

ars(l) =

Eqg. (43) may be used as the basis for the matrix element calculations. After
simplifications, the matrix elements may be expressed using conventional collision

integrals which are given by'% 18

2 S+2 [
Q<LS>(T)=(s+1)!(%) fo‘“’_(zl’&) 9%*2QW(g)dyg (44)



2(1+ 1)
20+ 1 — (=1)!

QW = 2n< ) f o0(1 — cos! y(b))bdb (45)
0

The coefficients in eqs. (44-45) are traditionally added so that the value of both
integrals is md? for a hard sphere of diameter of influence (radius of gas plus ion) d. The
calculation of the matrix elements is now tedious but straightforward. To start, several
examples are shown which are relevant to important discussions, while the rest of the
calculations and a table will be added to the supplementary information which includes

further elements not previously calculated.

Calculation of ay(1)
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=z (L) with Z = (z; =w,z,,2;) and the

M )1/2
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following expressions:
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one arrives at the integral to solve the matrix element:
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One can now integrate the center of mass velocity W from —oco to oo for all three

coordinates. This yields:
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To continue the integration, it is necessary to define proper general vectors for g
and g'. Using cartesian coordinates and spherical angles, the relative velocity vector may
be given by: G = (g1, 92, 93) = g(cosby, sinbycosp,, sinbysing,), where 6, and ¢,
are the azimuthal and polar angle respectively. Due to the symmetry of elastic collisions
and conservation of energy, g' can be interpreted at this point as the relative velocity of
reemission of the trajectory of a gas molecule with the ion fixed in a centered position as
shown in Figure 1. If the gas molecule trajectory direction was inverted, the result would
be a replenishment of class g velocities from class g'. Figure 1 can also be used to
understand the deflection angle y and the out-of-plane angle € that can be used for the

definition of g':
g = g(cosy g+ siny coseé, + siny sine é;) (48)

[Figure 1 near here]

where g is a unit vector in the direction of g and é, and é; are unit vectors perpendicular
to g and to each other. Note that due to the conservation of energy in the collision g and
g' have the same magnitude. In cartesian coordinates, the second and third terms in eq.

(48) may be given by:
&, = g(O, — sin(qbg) , cos(qbg)) cos € siny (49)

= g(sin(eg) ,— cos(qbg) cos(Hg) ,— cos(Gg) sin(¢g)) siny sine (50)



which are much simpler and more efficient to use than those produced by Vincenti and
Kruger™. Substituting the incident and reemitted relative velocity vectors and integrating

eq. (47) for € between 0 and 2m yields:

3
M >z d*?e,M

f f 2n(1 — cosy)bdb e(_(z"#eff)gz)gzgdﬁ
2nkT,)  2kT, 1
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T 2T _ u 2
— cosx)bdbl f f e( (ZkTeff)g )g5 cos® 6, sin B, dep,db,dg
o Jo

and dg,dg,dgs = g*sinf, d¢,db,dg:

where the term in brackets is Q((g). Integrating over the velocity angles and

1/2
multiplying and dividing by (m’f ff) :

N =

8 2kT,
aOO(l) =§eﬂ< eff)

3 S U 2
Tu ( ; ) Jo etz )QSQ“)(g)dg (51)
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The term in brackets corresponds to QY (T, ) so that:

8  [2kT
ago(D) =3¢, n—;ff QD (T,.f) (52)

A dimensionless matrix coefficient can be obtained by dividing eq. (52) by

’ZkTe @D .
eﬂ Tff Q (Teff)

a3o(1) = — o)

eu =i O (Terr)

(53)
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This coefficient is fundamental in obtaining the first approximation to mobility as

shown in eq. (14).

Calculation of ay, (1)

Given the following identities:

1 1 2
0 _ (M)z (2):1(M)2§_ M 2 (M)4
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Substituting the above into eq. (43) and integrating over the center of mass velocities and

over the polar angle € yields:
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Integrating over the velocity angles and arranging:
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Using the CCS relations and the identities LA and — = (1 — d) one can write:
kTp kTefr mTyp

g°(1 — cos(x))2nbdbdg
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Simplifying, rearranging, and using the common relations C* = Q2 (Tery) and B* =

= 9(1'1)(Teff)
. 9(1’3)(Teff).
> ey,
, 1
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a02(1) = ~ 75z eﬂ< wiff> QD[3(4B* — 5) + 4(6C* — 5)]
Hence:
8d?
a,(1) = ——=[3(4B* —5) + 4(6C* - 5)] (54)

105

The expressions are written following the behavior of the Maxwell model and the

reason for the choice will be clarified in the discussion below.

Calculation of a,4(0)
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Integrating over the center of mass velocities, over epsilon, and over the velocity

angles yields:
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Using CCS expressions:
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This matrix element contained an error in previous works by Viehland and
Mason! that has been corrected here. The calculation for other matrix elements and their
final format is given in the supplementary information. Several codes are available from

the authors to calculate other matrix elements.



Results and discussion

While the two-temperature theory has been validated for single atoms in monoatomic
gases®” 4> 77 it has not been comprehensively studied for all-atom models and all fields
until recently® ™8 7, The reason is that there is an expectancy that the elastic collision
assumption would not hold at high enough fields® 4> . In short, upon a highly energetic
collision between ion and gas, the expectancy is that there would be an exchange of
translational energy with internal degrees of freedom (rotational and vibrational), making
the collision effectively inelastic and establishing an equilibrium temperature for the ion,
that one can refer to as internal temperature T; and that could be different from the
effective temperature here established. This internal temperature may be defined as the
temperature at which the internal energy difference pre- and post-collision is zero on
average.

For monoatomic gases with molecular ions, once this new translational-internal
equilibrium is established, the expectancy is that the collisions may be once again
regarded as elastic on average, and T; = T,s,; since the energy does not have any means
of escaping the ion (neglecting radiation) other than through the translational degrees of
freedom of the gas molecule® 8. This remains true as long as the relaxation time of the
deformation caused by the ion-gas collision is smaller than the time between two
consecutive collisions.

For molecular gases, however, the internal degrees of freedom of the gas molecule
will provide means for some of the energy to escape making the collision inevitably
always inelastic. Under such circumstances, it is unadvisable to use the two-temperature
theory without an inelastic correction at least at moderate to high fields, and other
methods are preferred®* 82, Among other possibilities, although not the focus of this work,

one can use the Wang-Uhlenbeck-de Boer (WUB) equation (which is an extension of the



Boltzmann equation that takes into account the internal degrees of freedom). Another
option is to simply assume an inelasticity or accommodation effect to describe the loss of
energy®l. This inelasticity coefficient is difficult to obtain theoretically but it can be
obtained experimentally®: 8384,

This work will therefore focus on the two-temperature theory for monoatomic
gases, leaving the study of molecular gases for when sufficient data is available to study

inelasticity appropriately.

Regarding the success of T, for the two-temperature theory

The success of the two-temperature arguably relies on the choice of T, for the base
function. In general, however, one could presume that a more accurate basis function

would instead include a drift velocity and an effective temperature such as:

M(Zi_vdi)z
G(O) — e_ ZkTeff
However, the reason for the success of F(® and not ¢(© is not clear until the
matrix elements are calculated. When the product of F(® and f is written in terms of
relative kinetic energy, the moment integrals show a distribution that can be approximated

as.

e foeffu + ¢(9))

where ¢ (g) is a function that depends on the order of approximation. From a momentum
transfer perspective, this new distribution is no different from Chapman-Enskog
linearization of G(® f (see A.27-28 from Larriba and Prell® *8). In all, since T, includes

the field energy (it relates to the ion’s energy in the lab reference frame), having T}, in the



basis function includes both the widening of the distribution, which is related to T, s ¢, and
the translation of the distribution to the average velocity v, as was demonstrated by

arriving at Wannier’s equation for the ion’s energy.

Effect of successive high field approximations for hard spheres and different

mass ratios

Depending on the choice of truncation scheme for both mobility and energy, the results
of the approximations may vary. Among the multiple options, we have opted to use n on

the first term of the summation in eq. (13), the use of eq. (36) to calculate £ and the same

approximation is used for both mobility and energy. Finally, our scheme uses <zp§“>i =
0 for all approximations and not only the highest approximation. The rigid sphere case
corresponds to the case where the ion is large enough that attractive ion potentials are
negligible, and the physical size of the ion dominates, greatly simplifying the interaction.
For a hard sphere, all the CCS ratios, e.g., C*, A%, ..., can be substituted by 1, making the
calculation extremely fast for any approximation?*, once the appropriate matrix elements

are known. A dimensionless parameter is used to represent the field such as?:

£ — 3rrl/2 <m+M)1/2(ze)E
~ \16kT M wd2/ n

The results are shown in Figure 2. The y-axis represents the deviation of
successive approximations with respect to the first approximation in terms of percentage
up to the fourth approximation (the first approximation is therefore the x-axis). As the
matrix elements depend on the masses of both ion and gas, the results are shown for
different mass ratios. It is interesting to see the variation from M/m < 1to M/m > 1.
For low mass ratios, the variation from the first approximation is largest at low fields.

The opposite occurs for high mass ratios where the largest variation occurs at high fields.



Two types of convergence can be observed. As M /m — oo the deviation seems to reach
an asymptote as there is little difference between the 100 and 1000 cases. In terms of
overall convergence, the difference in the deviation between successive approximations
seems to become smaller with higher approximations. For this reason, and the fact that
the ions of interest in ion mobility and analytical chemistry follow ratios M/m > 1 and
E* <10, one can conclude that the 4th approximation should be sufficient to achieve
acceptable results for all fields. It is important to mention that our results, although
qualitatively similar, vary from those of Viehland .

[Figure 2 near here]

The Maxwell Model and Collision Cross Section ratios

One of the most important criteria for truncation schemes used in the two-
temperature theory relies on the assumption that a general solution for an ion gas pair will
be similar to that of the Maxwell Model (a »~* interaction)'®. The Maxwell Model was
initially proposed for vanishing fields (E /n — 0) for the one-temperature theory where
off-diagonal coefficients of the matrix elements are zero?. For the two-temperature, it
has been stated that off-diagonal terms do survive although only those where s < r. It is
therefore important to study how molecular ions with a physical size and a 4-6-12
potential interaction evolve in comparison to the Maxwell model. This is preferably done
in terms of ratios of collision cross sections as their value is well known for the Maxwell
model. A particularity of the Maxwell model is that the Q( integral is proportional to 1/g

which can be used to obtain the ratios. For example, for C*, B* or A*:
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where Q*® = gQ® and independent of g. The rest of the ratios can be equally calculated

(22)
and are provided in the supplementary information. The ratios A* = Z(n)ge”% and F* =
U err

aG3(r, . .
Q(“)é ”g are ratios whose numerical values depend on the angular pattern (see eq. 56)
I\ Uefr

while the rest of the ratios have established values.
The general expressions for the matrix elements a;,(l) can then be written
following the expectancy that general ratios are close to Maxwell model ratios results. It

is then easy to see why those matrix elements with s > r are zero for the Maxwell model

2
(as advanced previously). For one of the examples above, ag,(1) = — % [3(4B* —5) +

4(6C* —5)], in which s > r, the matrix element will be zero for the Maxwell model.



Elements with s < r always have a nonzero extra term, e.g., 10f(1 — Zeu)2 for a3,(0).
The rest of the ratios are provided in the supplementary information.

It would be interesting to study the deviation from the expected Maxwellian
values of the ratios for small ions in He gas. The results for a few of the ratios are shown
in Figure 3 for 0" with a 4-6-12 potential. Very noticeable is that all ratios follow a
similar tendency. They start below the Maxwell assumption and increase asymptotically
to 1as E/n increases. At low field, the oxygen ion acts very similar to how a 4-interaction
potential would, with an additional effect from the 6-interaction potential. As the field
increases, the ion starts acting more like a hard sphere due to the 12-interaction potential
that becomes dominant. As such the CCS ratio become close to 1 the higher the field
interaction is'3. In all, note that for low fields, 0-40Td, substitution of the ratios for their
Maxwell value is a decent approximation for monoatomic ions as shown by Mason and
McDaniel'®. As the ion becomes larger, however, the 4-6 interaction effect should
become weaker compared to the effect of the physical size (or 12-interaction) even at
lower fields. This can be observed for C* in Figure 4 for ions of increasing size, namely
0%, H,0%*,CHZ and Tryphenilene. The larger the ion, the closer to 1 the ratios are and
the further away from the Maxwell effect. It is therefore not recommended to use
Maxwell ratios for molecular ions and perform the actual calculations.

[Figure 3 and Figure 4 near here]

Calculations for small ions and rigid spheres for arbitrary fields

An ideal situation for the two-temperature theory is that of two monoatomic entities, ion
and gas interacting together. Under such circumstances, the collisions may be regarded
as fully elastic, and the theory should be able to describe the collision quite accurately in

the instances where quantum effects may be regarded as negligible® 3, For such cases,



a 4-6-12 interaction potential between two monoatomic entities combines the most
important long-range effects as well as the repulsion core. This interaction is typically
expected to be quite accurate for all fields as long as the Lennard-Jones parameters are
optimized. Given that the matrix elements heavily depend on the mass, one would also
like to compare the different possible approximations, and their effect for different mass
ratios and different potential interactions. Figure 5 A-E shows the results of the difference
between mobility approximations (akin to Figure 2) for an oxygen atom with a 4-6-12
potential interaction and for different ion-to-gas mass ratios. The Lennard Jones
potentials for Oxygen used were ¢ = 3.043 A and € = 0.214668 e~2'J. These results
are expected to vary from hard sphere ones in particular for smaller mass ratios, while for
larger mass ratios the values are expected to be qualitatively similar.

One would like to test the results of the two-temperature theory for small ions in
light gases with respect to experiments. This is shown in Figure 5F, where the reduced
mobility of O, H,0% and CHZ are shown as a function of E/n both numerically (4™
approximation) using IMoS®-®° and experimentally in He?* %6, The program is available

and free of charge (www.imospedia.com) and uses a parallelized interface to calculate

reduced mobilities and CCS for different gases and fields up to the fourth approximation.
Similar results for a variety of small ions are shown in a companion paper to this one?. It
is clear that for the monoatomic ion, the two-temperature theory reproduces the
experimental results quite accurately. For the polyatomic ions, the theoretical results
follow the experimental curves quite well (given that the experimental results have a 7%
error). Finally, for CHZ, all approximations are shown (one through four). Given that the
mass ratio is about 4, it is expected that the largest differences between the
approximations will occur at high fields. This is visibly the case in Figure 5F. The higher

the approximation the closer the result is to the experimental values. One can also observe


http://www.imospedia.com/

that the difference between the third and fourth approximation is rather small, hinting
toward convergence.

[Figure 5 near here]

Conclusions

This manuscript aims to provide a concise description of the two-temperature theory
along with rigorous mathematical arguments behind its success at predicting the ion’s
drift velocity in monoatomic gases at high fields. Moreover, a thorough procedure for
obtaining the equations (including the matrix elements) for higher-order mobility
approximations is also provided with high detail, making this work suitable for beginners
and experts in ion mobility. The work itself tries to explain the suitability of the two-
temperature theory with concrete arguments of why the theory works and when it should

be employed. The key takeaways of the manuscript can be consolidated as below:

e The success of the two-temperature theory relies on the choice of a basis function
with a base temperature (T},) related to the ion’s temperature and different from
the gas temperature (T). The base temperature starts as a parameter, but a relation
between the temperature and the field over the concentration must be made at
some point.

e Different moments of the Boltzmann equation need to be solved to determine
various transport properties, e.g., drift velocity (v,), energy, etc. The solution
assumes that the collision operator may be written in terms of an infinite sum of
orthogonal functions (Burnett) with coefficients that are known as matrix
elements. Since the moments cannot be obtained without knowing the ion’s

velocity distribution a priori, a recursive relation is sought, for which different



approximations can be obtained from lower-order approximations, starting with
the first.

Different successive approximations are dependent on complicated functions of
the matrix elements. The matrix elements themselves are as well complicated
functions of ratios of Collision Integrals. The explanation of how to calculate
these matrix elements has been thoroughly explained in this manuscript, for the
first time to our knowledge. Full results are shown up to the third approximation,
while numerically, up to the fourth approximation is calculated in IMoS. The
expressions are written such that the off-diagonal terms get canceled if the
Maxwell model is used.

A choice needs to be made for the base temperature. If the 3/2kT;, is chosen to
be equivalent to the ion’s energy, a relation may be calculated that relates T}, to
E /n to different approximations, leading to a closed-form equation of the ion
mobility. The method chosen here can accurately solve higher-order mobility
equations almost instantaneously once the collision integrals are calculated, in
contrast to other methods, which might take several minutes or hours.

The first approximation to the ion’s energy yields Wannier’s energy equation.
This establishes that 3/2kT;, can be related to the kinetic energy of the ion due to
the field plus the translational energy at a temperature higher than that of the gas,

due to collisional heating, and that it is labeled the effective temperature T, .

The effect of higher-order approximations was tested for different M /m ratios
first for the hard sphere case and then for a 4-6-12 potential. Interestingly, in all
cases, the deviation in mobility between successive approximations was reduced,

indicating convergence. Moreover, the two-temperature theory has been tested for



monoatomic and polyatomic ions in Helium gas at high E /n showing excellent
correlation with experimental results, further solidifying the hypothesis.

Several collision integral ratios of different ions (using a 4-6-12 potential) were
calculated as a function of E /n. For monoatomic and small polyatomic ions, the
ratios were found to be similar to those of the Maxwell model at moderate fields
(0-40 Td), and similar to those for of the hard-sphere model at high fields (i.e.,
approaching asymptotically at 1). For monoatomic or very small polyatomic ions,
substituting the ratios for their Maxwell values may therefore yield acceptable
results at low fields. However, it is not practical to utilize the Maxwell model for
bigger polyatomic ions because the ratios deviate even at negligible fields.

For polyatomic ions in high E /n, it is expected for collisions to be inelastic in the
translational sense, meaning that some of the collisional energy is transferred to
the internal degrees of freedom of both ion and gas molecule. For monoatomic
gases, the inelasticity can be generally ignored because there is no mode of energy
escape once the ion’s internal energy reaches equilibrium with the relative
translational energy of collision, and the two-temperature theory stays valid. For
polyatomic gases, however, some of the energy can always escape the system
through the internal degrees of freedom of the gas, making the two-temperature

theory less accurate with increasing fields.
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Supplementary Information

Derivation of several equation can be found here at:

References

1.

10.

11.

12.

13.
14.

V. D. Gandhi and C. Larriba-Andaluz, Predicting ion mobility as a function of the
electric field for small ions in light gases. Analytica Chimica Acta, 1184,
(2021):339019.

F. Lanucara, S. W. Holman, C. J. Gray, and C. E. Eyers, The power of ion
mobility-mass spectrometry for structural characterization and the study of
conformational dynamics. Nature chemistry, 6, (2014):281.

I. Campuzano, M. F. Bush, C. V. Robinson, C. Beaumont, K. Richardson, H. Kim,
and H. I. Kim, Structural characterization of drug-like compounds by ion mobility
mass spectrometry: comparison of theoretical and experimentally derived
nitrogen collision cross sections. Anal Chem, 84, (2012):1026.

J. W. Lee, H. H. L. Lee, K. L. Davidson, M. F. Bush, and H. I. Kim, Structural
characterization of small molecular ions by ion mobility mass spectrometry in
nitrogen drift gas: improving the accuracy of trajectory method calculations.
Analyst, 143, (2018):1786.

C. P. Harrilal, V. D. Gandhi, G. Nagy, X. Chen, M. G. Buchanan, R. Wojcik, C.
R. Conant, M. T. Donor, Y. M. Ibrahim, and S. V. Garimella, Measurement and
Theory of Gas-Phase lon Mobility Shifts Resulting from Isotopomer Mass
Distribution Changes. Analytical Chemistry, 93, (2021):14966.

J. L. Kaszycki, A. P. Bowman, and A. A. Shvartsburg, lon mobility separation of
peptide isotopomers. Journal of The American Society for Mass Spectrometry, 27,
(2016):795.

R. Wojcik, G. Nagy, I. K. Attah, I. K. Webb, S. V. Garimella, K. K. Weitz, A.
Hollerbach, M. E. Monroe, M. R. Ligare, and F. F. Nielson, SLIM ultrahigh
resolution ion mobility spectrometry separations of isotopologues and
isotopomers reveal mobility shifts due to mass distribution changes. Analytical
chemistry, 91, (2019):11952.

C. Larriba-Andaluz, A perspective on the theoretical and numerical aspects of lon
Mobility Spectrometry. International Journal of Mass Spectrometry, 470,
(2021):116719.

C. Larriba-Andaluz and J. S. Prell, Fundamentals of ion mobility in the free
molecular regime. Interlacing the past, present and future of ion mobility
calculations. International Reviews in Physical Chemistry, 39, (2020):569.

L. A. Viehland and E. Mason, Gaseous lon mobility in electric fields of arbitrary
strength. Annals of Physics, 91, (1975):499.

L. A. Viehland and E. Mason, Gaseous ion mobility and diffusion in electric fields
of arbitrary strength. Annals of Physics, 110, (1978):287.

T. Kihara, The mathematical theory of electrical discharges in gases. B. Velocity-
distribution of positive ions in a static field. Reviews of Modern Physics, 25,
(1953):844.

E. W. McDaniel and E. A. Mason, Mobility and diffusion of ions in gases. (1973).
E. Krylov and E. Nazarov, Electric field dependence of the ion mobility.
International Journal of Mass Spectrometry, 285, (2009):149.



15.

16.
17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.
36.

I. Buryakov, E. Krylov, E. Nazarov, and U. K. Rasulev, A new method of
separation of multi-atomic ions by mobility at atmospheric pressure using a high-
frequency amplitude-asymmetric strong electric field. International Journal of
Mass Spectrometry and lon Processes, 128, (1993):143.

E. A. Mason and E. W. McDaniel, Transport properties of ions in gases: 1988).
E. W. McDaniel and L. Viehland, The transport of slow ions in gases: Experiment,
theory, and applications. Physics Reports, 110, (1984):333.

S. Chapman and T. G. Cowling, The mathematical theory of non-uniform gases:
an account of the kinetic theory of viscosity, thermal conduction and diffusion in
gases: Cambridge university press, 1990).

J. Whealton and E. Mason, Transport coefficlents of gaseous ions in an electric
field. Annals of Physics, 84, (1974):8.

L. A. Viehland and S. Lin, Application of the three-temperatue theory of gaseous
ion transport. Chemical Physics, 43, (1979):135.

S. Lin, L. Viehland, and E. Mason, Three-temperature theory of gaseous ion
transport. Chemical Physics, 37, (1979):411.

L. A. Viehland, Velocity distribution functions and transport coefficients of
atomic ions in atomic gases by a Gram—Charlier approach. Chemical physics,
179, (1994):71.

H. Ellis, R. Pai, E. McDaniel, E. Mason, and L. Viehland, Transport properties of
gaseous ions over a wide energy range. Atomic Data and Nuclear Data Tables,
17, (1976):177.

L. A. Viehland, Gaseous ion mobility, diffusion, and reaction: Springer, 2018).
E. A. Mason and H. W. Schamp Jr, Mobility of gaseous lons in weak electric
fields. Annals of physics, 4, (1958):233.

J. Aisbett, J. M. Blatt, and A. H. Opie, General calculation of the collision integral
for the linearized Boltzmann transport equation. Journal of Statistical Physics, 11,
(1974):441.

D. Spalding, The Molecular Theory of Gases and Liquids. JO Hirschfelder, CF
Curtiss and RB Bird. John Wiley, New York. Chapman & Hall, London, 1954.
1,219 pp. Diagrams. 160s. The Aeronautical Journal, 59, (1955):228.

M. Abramowitz and I. A. Stegun, Handbook of mathematical functions Dover
Publications. New York, 361, (1965).

P. Panat, B. Paranjape, and R. Teshima, A simple theory of mobility for ions in
gases. Journal of Physics D: Applied Physics, 16, (1983):1477.

K. Suchy, Neue Methoden in der kinetischen Theorie verdinnter Gase. in
Ergebnisse der exakten naturwissenschaften: Springer, 1964), 103.

F. Weitzsch, Ein neuer Ansatz fur die Behandlung gasdynamischer Probleme bei
starken Abweichungen vom Thermodynamischen Gleichgewicht. Annalen der
Physik, 462, (1961):403.

H. Skullerud, Kinetic theory of ion transport in gases. in Electrical Breakdown
and Discharges in Gases: Springer, 1983), 177.

P. Almeida, M. Benilov, and G. Naidis, Calculation of ion mobilities by means of
the two-temperature displaced-distribution theory. Journal of Physics D: Applied
Physics, 35, (2002):1577.

S. Lin and J. Bardsley, Monte Carlo simulation of ion motion in drift tubes. The
Journal of Chemical Physics, 66, (1977):435.

C. Cercignani, Mathematical methods in kinetic theory: Springer, 1969).

D. Burnett, The distribution of velocities in a slightly non - uniform gas.
Proceedings of the London Mathematical Society, 2, (1935):385.



37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

I. Gatland, L. Viehland, and E. Mason, Tests of alkali ion - inert gas interaction
potentials by gaseous ion mobility experiments. The Journal of Chemical Physics,
66, (1977):537.

L. Viehland, Internal-energy distribution of molecular ions in drift tubes. in
Swarms of lons and Electrons in Gases: Springer, 1984), 27.

G. H. Wannier, Motion of gaseous ions in strong electric fields. The Bell System
Technical Journal, 32, (1953):170.

H. Skullerud, Monte-Carlo investigations of the motion of gaseous ions in
electrostatic fields. Journal of Physics B: Atomic and Molecular Physics (1968-
1987), 6, (1973):728.

G. H. Wannier, On the motion of gaseous ions in a strong electric field. I. Physical
Review, 83, (1951):281.

G. H. Wannier, Motion of gaseous ions in a strong electric field. Il. Physical
Review, 87, (1952):795.

B. M. Smirnov, Mobility of heavy ions in gas. in Doklady Akademii Nauk:
Russian Academy of Sciences, 1966), 322.

G. E. Spangler and R. A. Miller, Application of mobility theory to the
interpretation of data generated by linear and RF excited ion mobility
spectrometers. International Journal of Mass Spectrometry, 214, (2002):95.

L. Viehland, S. Lin, and E. Mason, Kinetic theory of drift-tube experiments with
polyatomic species. Chemical Physics, 54, (1981):341.

M. Waldman and E. Mason, Generalized Einstein relations from a three-
temperature theory of gaseous ion transport. Chemical Physics, 58, (1981):121.
P. Ong and M.-M. Li, Monte Carlo simulation studies on the validity of the Gram-
Charlier calculations of velocity distributions of Na+ swarm in neon gas.
Chemical physics, 211, (1996):115.

L. A. Viehland and E. Mason, Statistical-mechanical theory of gaseous ion—
molecule reactions in an electrostatic field. The Journal of Chemical Physics, 66,
(1977):422.

E. Mason and H.-s. Hahn, lon drift velocities in gaseous mixtures at arbitrary field
strengths. Physical Review A, 5, (1972):438.

J. Whealton and E. Mason, Composition Dependence of lon Diffusion
Coefficients in Gas Mixtures at Arbitrary Field Strengths. Physical Review A, 6,
(1972):19309.

J. Whealton, E. Mason, and R. Robson, Composition dependence of ion-transport
coefficients in gas mixtures. Physical Review A, 9, (1974):1017.

H. B. Milloy and R. E. Robson, The mobility of potassium ions in gas mixtures.
Journal of Physics B: Atomic and Molecular Physics (1968-1987), 6,
(1973):11309.

H.-s. Hahn and E. Mason, Energy partitioning of gaseous ions in an electric field.
Physical Review A, 7, (1973):1407.

H. M. Rosenstock, K. Draxl, B. Steiner, and J.-T. Herron, Energetics of gaseous
ions. National Standard Reference Data System, 1977).

H. Ellis, M. THACKSTON, E. McDaniel, and E. Mason, Transport properties of
gaseous ions over a wide energy range. Part I1l. Atomic data and nuclear data
tables, 31, (1984):113.

H. Ellis, E. McDaniel, D. Albritton, L. Viehland, S. Lin, and E. Mason, Transport
properties of gaseous ions over a wide energy range. Part 1. Atomic data and
nuclear data tables, 22, (1978):179.



o7.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

H. Wilhelm, Kinetic theory of subsonic and supersonic transport processes in
weakly ionized gases. Il Nuovo Cimento B (1965-1970), 68, (1970):189.

H. Dreicer, Electron and ion runaway in a fully ionized gas. I. Physical Review,
115, (1959):238.

H. Dreicer, Electron and ion runaway in a fully ionized gas. Il. Physical review,
117, (1960):329.

D. Morsa, V. Gabelica, and E. De Pauw, Effective temperature of ions in traveling
wave ion mobility spectrometry. Analytical chemistry, 83, (2011):5775.

X. An, G. A. Eiceman, R.-M. Résdnen, J. E. Rodriguez, and J. A. Stone,
Dissociation of proton bound ketone dimers in asymmetric electric fields with
differential mobility spectrometry and in uniform electric fields with linear ion
mobility spectrometry. The Journal of Physical Chemistry A, 117, (2013):6389.
A. A. Shvartsburg, R. D. Smith, A. Wilks, A. Koehl, D. Ruiz-Alonso, and B.
Boyle, Differential ion mobility spectrometry: nonlinear ion transport and
fundamentals of FAIMS. (2008).

S. Lee, T. Wyttenbach, and M. T. Bowers, Gas phase structures of sodiated
oligosaccharides by ion mobility/ion chromatography methods. International
journal of mass spectrometry and ion processes, 167, (1997):605.

J. T. Hopper and N. J. Oldham, Collision induced unfolding of protein ions in the
gas phase studied by ion mobility-mass spectrometry: the effect of ligand binding
on conformational stability. Journal of the American Society for Mass
Spectrometry, 20, (2009):1851.

C. Bleiholder, F. C. Liu, and M. Chai, Comment on effective temperature and
structural rearrangement in trapped ion mobility spectrometry. Analytical
Chemistry, 92, (2020):16329.

C. Schaefer, A. T. Kirk, M. Allers, and S. Zimmermann, lon mobility shift of
isotopologues in a high kinetic energy ion mobility spectrometer (HiKE-IMS) at
elevated effective temperatures. Journal of the American Society for Mass
Spectrometry, 31, (2020):2093.

A. V. Tolmachev, A. N. Vilkov, B. Bogdanov, L. PAsa-Toli¢, C. D. Masselon,
and R. D. Smith, Collisional activation of ions in RF ion traps and ion guides: The
effective ion temperature treatment. Journal of the American Society for Mass
Spectrometry, 15, (2004):1616.

G. Ford, Matrix elements of the linearized collision operator. The Physics of
Fluids, 11, (1968):515.

B. Shizgal and J. Fitzpatrick, Matrix elements of the linear Boltzmann collision
operator for systems of two components at different temperatures. Chemical
Physics, 6, (1974):54.

M. J. Lindenfield and B. Shizgal, Matrix elements of the Boltzmann collision
operator for gas mixtures. Chemical Physics, 41, (1979):81.

S. Lin, R. Robson, and E. Mason, Moment theory of electron drift and diffusion
in neutral gases in an electrostatic field. The Journal of Chemical Physics, 71,
(1979):3483.

J. A. Hornbeck, The drift velocities of molecular and atomic ions in helium, neon,
and argon. Physical Review, 84, (1951):615.

C. Chang, G. Meisels, and J. Taylor, High-pressure mass spectrometry: lon
energies and their distributions in chemical ionization sources. International
Journal of Mass Spectrometry and lon Physics, 12, (1973):411.

W. Vincenti and C. Kruger, Introduction To Physical Gas Dynamics. New York,
(1965).



75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

G. R. Freeman and D. A. Armstrong, Electron and ion mobilities. in Advances in
atomic and molecular physics: Elsevier, 1985), 267.

I. Gatland, W. Morrison, H. Ellis, M. Thackston, E. McDaniel, M. Alexander, L.
Viehland, and E. Mason, The Li+-He interaction potential. The Journal of
Chemical Physics, 66, (1977):5121.

D. Lamm, M. Thackston, F. Eisele, H. Ellis, J. Twist, W. Pope, I. Gatland, and E.
McDaniel, Mobilities and interaction potentials for K+—Ar, K+-Kr, and K+—Xe.
The Journal of Chemical Physics, 74, (1981):3042.

S. Dubrovskii and N. Balabaev, Simulation of the Drift of a Macromolecular lon
in a Gas under the Action of an Electric Field. Polymer Science, Series A, 63,
(2021):891.

S. Dubrovskii and N. Balabaev, Molecular Dynamics Simulation of the Behavior
of Protonated Poly (ethylene oxide) s in Drift Tube Experiments. Polymer
Science, Series A, (2022):1.

L. Viehland and D. Fahey, The mobilities of NO— 3, NO— 2, NO+, and Cl- in
N2: A measure of inelastic energy loss. The Journal of Chemical Physics, 78,
(1983):435.

G. E. Uhlenbeck and J. De Boer, Studies in statistical mechanics: North-Holland,
1962).

W. Federer, H. Ramler, H. Villinger, and W. Lindinger, Vibrational Temperature
of O 2+ and N 2+ Drifting at Elevated E N in Helium. Physical review letters, 54,
(1985):540.

G. Eiceman and Z. Karpas, lon Mobility Spectrom. New York: Taylor & Francis,
2005).

Y. Kaneko, L. Megill, and J. Hasted, Study of inelastic collisions by drifting ions.
The Journal of Chemical Physics, 45, (1966):3741.

S. A. McLuckey, Principles of collisional activation in analytical mass
spectrometry. Journal of the American Society for Mass Spectrometry, 3,
(1992):599.

V. D. Gandhi, L. Hua, M. Latif, X. Chen, and C. Larriba-Andaluz, (IMoS 1.13)
Monte-carlo calculation of ion mobility at high electric field using two-
temperature theory. To be published.

C. Larriba and C. J. Hogan Jr, lon mobilities in diatomic gases: measurement
versus prediction with non-specular scattering models. The Journal of Physical
Chemistry A, 117, (2013):3887.

C. Larriba and C. J. Hogan Jr, Free molecular collision cross section calculation
methods for nanoparticles and complex ions with energy accommodation. Journal
of Computational Physics, 251, (2013):344.

X. Chen, V. Gandhi, J. Coots, Y. Fan, L. Xu, N. Fukushima, and C. Larriba-
Andaluz, High resolution Varying Field Drift Tube lon Mobility Spectrometer
with diffusion autocorrection. Journal of Aerosol Science, 140, (2020):105485.



Figures

Figure 1

Figure 1. Representation of a gas-ion trajectory in 3D. The gas molecule with the velocity g is being deflected by an
angle y. The trajectory plane (blue) makes an angle e with respect to a fixed reference plane (red). (Adapted from
Vincenti and Kruger”, and Larriba and Prell®).
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Figure 2. The percentage difference between the first and the higher order approximations (for the hard sphere model)

as a function of the dimensionless parameter £* at different mass ratios (A) M/m
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Figure 3. CCS ratios for 07 ion in helium gas as a function of E /n. The dashed and solid lines represent the CCS
ratios for the Maxwell and 4-6-12 potential approximation model respectively.

Figure 4. C* ratios for different ions in helium gas as a function of E /n. The dashed line represents the C* ratio for
the Maxwell model. The C* ratio becomes closer to 1 at low E /n as the ion size increases.
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Figure 5. The percentage difference between the first and the higher order approximations (using the 4-6-12 Lennard-
Jones trajectory method) as a function of the dimensionless parameter £* at different mass ratios (A) M/m = 0.1,
(B) M/m = 0.5, (C) M/m =1, (D) M/m = 4, (E) M/m = 1000. The y-axis is given by % deviation =

W. Figure 5F shows the experimental and the calculated mobility for 0*, H,0* and CHZ in helium as
d/1

a function of E/n. For CHZ, the mobility using different approximations is illustrated. Calculations were performed
in IMoS 8689,

Figure captions

Figure 1. Representation of a gas-ion trajectory in 3D. The gas molecule with the velocity
g is being deflected by an angle y. The trajectory plane (blue) makes an angle e with
respect to a fixed reference plane (red). (Adapted from Vincenti and Kruger’, and Larriba
and Prell®).
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Figure 4. C* ratios for different ions in helium gas as a function of E /n. The dashed line
represents the C* ratio for the Maxwell model. The C* ratio becomes closer to 1 at low
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