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A Critical Review of the two-temperature theory and the derivation of 

matrix elements. High field Ion mobility and energy calculation for all-

atom structures in light gases using a 4-6-12 potential. 

Ion mobility has become a ubiquitous tool in many aspects of Analytical Chemistry 

due to its ability to separate compounds in the gas phase prior to feeding them to a 

Mass Spectrometer. To understand how this complex separation occurs, it is 

necessary to thoroughly explain the physics behind the ion-gas interaction. In 

particular, this manuscript aims to describe the physics behind the collisions at high 

fields using the two-temperature approximation. The two-temperature theory has 

been recently employed to describe the mobility of polyatomic ions quite 

successfully and thus a proper account is warranted. A concise description is 

provided along with rigorous mathematical arguments behind its success at 

predicting the ion’s drift velocity. Moreover, a thorough procedure for obtaining 

the equations (including the matrix elements) for higher-order mobility 

approximations is also provided with high detail, making this work suitable for 

beginners and experts in ion mobility. In particular, a discussion is brought forth 

on the choice of the base temperature and its relation to both the effective 

temperature and the drift velocity of the ion. A comparison between a 4-6-12 

potential and the Maxwell model is made, pointing at the possible errors of using 

the Maxwell model for low- and high-field calculations. Using our in-house 

algorithm IMoS, successive approximations up to the fourth are tested against 

previous ones and against experimental results, showing both, asymptotic 

convergence, as well as a good agreement for monoatomic gases and small ions. 

Keywords: Two-temperature theory, ion-mobility, high-field, higher-order 

approximation, Collision Cross Section 

Introduction 

Ion Mobility Spectrometry (IMS) is maturing at an enormous rate, showing that gas phase 

separations are becoming key in analyte characterization1-4. This recognition is not 

unfounded, as the technique has been shown to separate compounds such as isomers and 

isotopomers, that cannot be resolved by Mass Spectrometry alone (MS)5-7. As instruments 

improve their resolution, some separations are no longer well-understood by the 



 

concurrent theory and new avenues must be explored and reasoned, while older ones may 

need to be dusted and improved8, 9. 

This work falls on the latter aspect, where the main goal is to describe how and 

why the two-temperature theory is an acceptable approach, showing how to obtain the 

matrix elements (up to the fourth approximation) regardless of the orthogonal functions 

that are used. This laborious effort will ease with the calculation of collision integrals for 

other theories and orthogonal sets (e.g., Hermite polynomials and the three-temperature 

theory). A major reason is that full derivations of the elements have never been shown in 

detail and are only tabulated to the second approximation10, 11. A variation of the 

truncation method brought forth by Mason and Viehland is also shown as well as a novel 

way of obtaining the ion’s energy that greatly speeds up the calculation process.  

We have previously shown that the two-temperature theory is more than capable 

of describing high-field (and or temperature) behavior of all-atom models in light gases1. 

The results show good behavior even for the first approximation although improvements 

are observed when higher-order approximations are included (up to the fourth). The main 

reason for the success of the two-temperature theory relies on two interrelated features. 

The first one considers that the ion’s velocity distribution is a function of a temperature 

which varies with 𝐸/𝑛 and is different from that of the gas while the second one, a 

consequence of the first, is that all higher-order terms are bounded (something not 

possible in the one temperature theory)9 so any approximation is valid at all fields. The 

assumption is that the distribution is still nearly Gaussian even at high fields, and that the 

ion has been accelerated to a drift velocity and has been heated to an effective temperature 

due to collisions with the gas at high relative speeds12   

The manuscript is divided into two parts. First, an introduction to the theory 

together with an explanation of the mobility calculation and accompanied by a description 



 

of how to obtain the matrix elements (the full calculation of all necessary elements is 

provided in the supplementary information) as well as how to obtain the ion’s energy (or 

the relation between field over gas concentration (𝐸/𝑛) and the ion’s temperature). This 

is followed by a discussion on the collision integrals for hard spheres and 4-6-12 

potentials and how their ratios vary from the normally accepted Maxwell model, and 

finally by a comparison between the different approximations as a function of the electric 

field for different mass ratios. 

Theoretical description 

To introduce the concept of the two-temperature theory, one should start by describing 

the series of approximations that must be done for the Boltzmann equation employed to 

be valid13. The first and most important is that the ion is small enough that it does not 

perturb the gas. Other approximations are that collisions are assumed to be elastic, that 

the gas distribution may be considered Maxwellian (independent of position and time and 

fixed at a given temperature), and that the number-density of the ions, 𝑁, is small enough 

that ion-ion interactions may be neglected. Under these assumptions, the Boltzmann 

equation for an ion’s velocity distribution 𝐹(𝑧𝑖) in the presence of a neutral gas with 

distribution (𝑓(𝑐𝑖) is given by 11, 14-16: 

𝜕𝐹

𝜕𝑡
+ 𝑧𝑗

𝜕𝐹

𝜕𝑥𝑗
+ 𝑎𝑗

𝜕𝐹

𝜕𝑧𝑗
= 𝑛∫∫∫(𝑓′𝐹′ − 𝑓𝐹)𝑔 𝑏𝑑𝑏𝑑𝜖𝑑𝑐𝑖 (1) 

In the equation above, 𝑛 is the number-density of gas, 𝑧𝑖 and 𝑐𝑖 are the ion and gas 

velocities respectively while 𝑔𝑖 = 𝑧𝑖 − 𝑐𝑖 is the relative velocity, 𝑏 is the impact 

parameter, 𝜖 is the intrinsic rotation angle and 𝑥𝑖, 𝑎𝑖 and 𝑡 are position, acceleration, and 

time. In equation (1), we initially assumed that the ion’s velocity distribution depends on 

position and time and that the acceleration is general. The term on the right corresponds 



 

to the collision term, where only interactions between gas and ion are accounted for. The 

collision term represents the replenishment (coming from prime sources) and 

extinguishment of ions of class velocity 𝑧𝑖 through collisions with gas molecule velocities 

between 𝑐𝑖 and 𝑐𝑖 + 𝑑𝑐𝑖 (where 𝑑𝑐𝑖 = 𝑑𝑐1𝑑𝑐2𝑑𝑐3). We shall simplify the equation even 

further by assuming that the distribution does not depend on position 𝑥𝑖 or time 𝑡 and that 

the acceleration 𝑎𝑗 only depends on a constant field value 𝐸 (relaxation effects are 

neglected) in the direction of ion movement 𝑧1 = 𝑤. Under such conditions, the equation 

becomes more manageable17, 18 

𝑒𝐸

𝑀𝑛

𝜕𝐹

𝜕𝑤
= ∫∫∫(𝑓′𝐹′ − 𝑓𝐹)𝑔 𝑏𝑑𝑏𝑑𝜖𝑑𝑐𝑖 (1𝑏) 

where 𝑒 is the elemental charge (assuming the ion is singly charged) and 𝑀 is the mass 

of the ion. Despite the simplifications, the equation is still difficult to solve even when 

the gas and the ion are considered spherical atoms17, 18. The main reason is that the term 

(𝑓′𝐹′ − 𝑓𝐹) is dependent on the ion-gas interaction. In general, an assumption generally 

relies on choosing a solution dependent on orthogonal polynomials as 19: 

𝐹 = 𝐹(0)∑ 𝑎𝑝𝜙𝑝
𝑝

= (
𝑀

2𝜋𝑘𝑇𝑏
)

3
2
𝑒
− 
𝑀(𝑧𝑖)

2

2𝑘𝑇𝑏 ∑ 𝑎𝑝𝜙𝑝
𝑝

(2) 

where 𝜙𝑝 are orthogonal functions, 𝑎𝑝 are unknown coefficients and 𝐹(0) is the basis or 

zeroth function chosen for the two-temperature theory. 𝑘 is the Boltzmann’s constant and 

𝑇𝑏 is a temperature that needs to be determined (generally called the base temperature) 

and which is normally equated to the ion’s lab reference of frame temperature and is 

different from the gas temperature 𝑇. Note that the choice of 𝐹(0) is important. If the 

choice of the basis function was exactly 𝐹, then the sum of orthogonal functions would 

be one, not requiring one to obtain the 𝑎𝑝 coefficients. A close choice would allow the 



 

least number of coefficients to be calculated in order to get a solution 20-22. 

Even with eq. (2), solving eq. (1b) is not possible normally 23-25. An option is to 

resort to calculating moments of 𝐹. This is obtained by multiplying eq. (1b) by a function 

of the ion’s velocity 𝜓𝑙𝑚
(𝑟)

 and integrating over all possible velocities 𝑧𝑖, i.e., 〈𝜓𝑙𝑚
(𝑟)〉𝐴𝑣 =

∫𝐹𝜓𝑙𝑚
(𝑟)
𝑑𝑧𝑖 , obtaining average quantities (moments) and leading to 25: 

𝑒𝐸

𝑀𝑛
⟨
𝜕𝜓𝑙𝑚

(𝑟)

𝜕𝑤
⟩

𝐴𝑣

= 〈𝒥𝜓𝑙𝑚
(𝑟)〉𝐴𝑣, (3) 

where 𝒥 is the operator given by: 

𝒥𝜓𝑙𝑚
(𝑟) = ∫∫∫𝑓 (𝜓𝑙𝑚

(𝑟) −𝜓𝑙𝑚
(𝑟)′)𝑔𝑏𝑑𝑏𝑑𝜖𝑑𝑐𝑖 (4) 

To arrive at eq. (3) from (1b), integration by parts and the inverse collision 

property have been used (refer to the supplementary information of this paper or eqs. B.4-

B.9 in ref9 or ref26 to see the calculation) as well as the use of the basis function 

approximation (eq. (2)). A solution to eq. (3) may be obtained by choosing appropriate 

orthogonal functions 𝜓𝑙𝑚
(𝑟)

, and where the practicality of the solution heavily relies on how 

close the orthogonal functions are to eigenfunctions of the operator 𝒥. Commonly 

employed for the two-temperature theory are the Burnett spherical polar functions given 

by 27, 28: 

𝜓𝑙𝑚
(𝑟) = (

𝑀|𝑧|2

2𝑘𝑇𝑏
)

𝑙

2
𝑃𝑙 (

𝑤

|𝑧|
)𝑆

𝑙+
1

2

(𝑟)
(
𝑀|𝑧|2

2𝑘𝑇𝑏
) 𝑒𝑖𝑚𝜙  (5)

Here 𝑃𝑙 are the Legendre polynomials and 𝑆
𝑙+
1

2

(𝑟)
 are the Sonine (associated Laguerre) 

polynomials. The Burnett functions happen to be the eigenfunctions of the operator 𝒥 for 

the Maxwell Model (𝑟−4 potential model), and hence a suitable candidate29. Note that 𝑇𝑏 



 

is the same temperature used in the basis function in order to utilize the integral 

superposition method30, 31. The Burnett functions are orthogonal to the inner product16: 

(𝜓𝑝, 𝜓𝑝′) = ∫𝑒
− 
𝑀(𝑧𝑖)

2

2𝑘𝑇𝑏 𝜓𝑝
†𝜓𝑝′𝑑𝑧𝑖 = ∫𝐹

(0)𝜓𝑝
†𝜓𝑝′𝑑𝑧𝑖 = 𝐴𝑝𝛿𝑝𝑝′ (6) 

With † describing complex conjugation and where the basis function 𝐹(0) appears as the 

required weight. For two functions formed using eq. (5), the inner product yields11, 32: 

(𝜓𝑙𝑚
(𝑟), 𝜓𝑝𝑞

(𝑠)) =
Γ (𝑙 + 𝑠 +

3
2)
(𝑙 + |𝑚|)!

(2𝑙 + 1)𝑠! Γ (
3
2)
(𝑙 − |𝑚|)!

𝛿𝑙𝑝𝛿𝑚𝑞𝛿𝑟𝑠 (7) 

where Γ and 𝛿𝑙𝑝 indicates Gamma and Kronecker delta functions respectively. One must 

now make an informed guess regarding what the general solution to the operator in eq. 

(3) might be. Since it is expected that the gas-ion interaction to be close to the Maxwell 

model33, 34, the operator may be expanded using Burnett functions35, 36: 

𝒥𝜓𝑙𝑚
(𝑟) =∑𝑎𝑟𝑠(𝑙)

 𝑠

𝜓𝑙𝑚
(𝑠) (8) 

where the sum of 𝑠 goes from 0 to infinity. The choice of eq. (8) stems from the fact that 

for the Maxwell model and the one-temperature theory, 𝒥𝑀𝑎𝑥𝑤𝑒𝑙𝑙𝜓𝑙𝑚
(𝑟)
= 𝜆𝑙

(𝑟)
𝜓𝑙𝑚
(𝑟)

, where 

𝜆𝑙
(𝑟)

 and 𝜓𝑙𝑚
(𝑟)

 are the eigenvalues and eigenvectors of the 𝒥𝑀𝑎𝑥𝑤𝑒𝑙𝑙 operator. For other 

cases, one may assume that the 𝑎𝑟𝑠(𝑙) are matrix elements that are larger the closer they 

are to the diagonal terms 𝑎𝑟𝑟(𝑙) 
37. For the two-temperature theory using the Maxwell 

model, the off-diagonal terms are not zero although they vanish for 𝑠 > 𝑟 (more on this 

below). Using the orthogonal relation and eq. (8), the matrix elements may be given by: 



 

𝑎𝑟𝑠(𝑙) =
(𝜓𝑙𝑚

(𝑠), 𝒥𝜓𝑙𝑚
(𝑟))

(𝜓𝑙𝑚
(𝑠), 𝜓𝑙𝑚

(𝑠))
 (9) 

The matrix elements happen to be independent of the 𝑚 index which can be dropped from 

the Burnett functions (𝑚 = 0)35. Making use of the recurrence relations of the Sonine 

and Legendre polynomials10: 

𝑑

𝑑𝑥
𝑆𝑝
(𝑛)(𝑥) = −𝑆𝑝+1

(𝑛−1)(𝑥) (10𝑎) 

𝑥2 − 1

𝑛

𝑑

𝑑𝑥
𝑃𝑛(𝑥) = 𝑥𝑃𝑛(𝑥) − 𝑃𝑛−1(𝑥) (10𝑏) 

𝑝𝑆𝑝
(𝑛)(𝑥) − 𝑥𝑆𝑝+1

(𝑛−1)(𝑥) = (𝑝 + 𝑛)𝑆𝑝−1
(𝑛) (𝑥) (10𝑐) 

(2𝑛 + 1)𝑥𝑃𝑛(𝑥) − (𝑛 + 1)𝑃𝑛+1(𝑥) = 𝑛𝑃𝑛−1(𝑥) (10𝑑) 

as well as eq. (8), eq. (3) may be written as (dropping the subscript 𝐴𝑣 and the index 𝑚)8: 

(𝑙 +
1

2
)∑ 𝑎𝑟𝑠(𝑙)

𝑠
〈𝜓𝑙

(𝑠)〉 = ℰ [𝑙 (𝑙 +
1

2
+ 𝑟) 〈𝜓𝑙−1

(𝑟) 〉 − (𝑙 + 1)〈𝜓𝑙+1
(𝑟−1)〉] (11) 

where 𝜓𝑙
(𝑠) = 0 for any negative index, 𝜓0

(0) = 1, and where38, 39:  

ℰ = (
𝑒𝐸

𝑀𝑛
) (

𝑀

2𝑘𝑇𝑏
)

1
2

(12) 

How to arrive at eq. (11) from eq. (3) and the recurrence relations are shown in 

the supplementary information. In eq. (11), only the matrix elements and the temperature 

𝑇𝑏 are unknown. Eq. (11) is an infinite set of coupled equations with an infinite sum. 

Given that direct averages of the Burnett functions cannot be obtained without explicitly 

knowing 𝐹(𝑧𝑖) (except for very particular cases34, 39-43), an iterative form is sought. To 



 

deal with the infinite sum, the procedure is to add one additional term over those of the 

Maxwell model (𝑠 > 𝑟 = 0) to the sum for every higher order approximation 10, 25. As 

such, the truncation scheme may look like: 

 (𝑙 +
1

2
) 𝑎𝑟𝑟(𝑙)〈𝜓𝑙

(𝑟)〉𝑛 = ℰ [𝑙 (𝑙 +
1

2
+ 𝑟) 〈𝜓

𝑙−1
(𝑟) 〉𝑛−1 − (𝑙 + 1)〈𝜓𝑙+1

(𝑟−1)〉𝑛−1] − (𝑙 +

1

2
)∑ 𝑎𝑟𝑠(𝑙)

𝑠=𝑟−1
𝑠=0 〈𝜓

𝑙
(𝑠)〉𝑛 − (𝑙 +

1

2
)∑ 𝑎𝑟𝑠(𝑙)

𝑠=𝑛+𝑟−1
𝑠=𝑟+1 〈𝜓

𝑙
(𝑠)〉𝑛+𝑟−𝑠                                           (13) 

where the subindex 𝑛 stands for the order of approximation (not to be confused with the 

gas density). Note that the summation index is kept from 𝑠 = 0 to 𝑛 + 𝑟 − 1, so that all 

terms up to 𝑠 = 𝑟 always appear and the upper summation terms are subsequently added 

for higher approximations. Mason has tried a different approximation type by using 𝑛 −

1 instead of 𝑛 on the third term (first summation) on the right-hand side with similar 

success 11. The last term of the right-hand side has an approximation 𝑛 + 𝑟 − 𝑠. The 

reason for this particular choice lies on the idea that each approximation contains only 

one additional (𝐸/𝑛)2𝑥 term in their sum11. Note also that the minimum order is 1 for the 

terms with approximation 𝑛 − 1 (there is no 0th approximation). 

To obtain the ion’s mobility, the Burnett function (from eq. (5)) 〈𝜓1
(0)〉 =

⟨(
𝑀
2𝑘𝑇𝑏

)
1/2
𝑤⟩ = ( 𝑀

2𝑘𝑇𝑏
)
1/2
𝑣𝑑 may be used and where 𝑣𝑑 = 𝐾𝐸 is the average drift velocity 

of the ion, being 𝐾 the mobility. Using this equation and Eq. (13), the first approximation 

may be given by: 

𝑎00(1)〈𝜓1
(0)〉𝐼 = ℰ      𝑜𝑟    𝐾𝐼 =

(
𝑒
𝑀𝑛)

𝑎00(1)
(14) 

where 𝑎00(1) would need to be calculated but it is dependent on the base temperature 

whose value needs to be provided. Advancing the value of the matrix element (to be 

calculated below), the typical Mason-Schamp expression appears 16, 26: 



 

𝐾𝐼 =
3𝑒

16𝑛
√

2𝜋

𝜇𝑘𝑇𝑒𝑓𝑓
 

1

Ω(1,1)(𝑇𝑒𝑓𝑓)
(15) 

where 𝜇 is the reduced mass and Ω(1,1)(𝑇𝑒𝑓𝑓) is the momentum transfer collision integral 

calculated at the effective temperature 𝑇𝑒𝑓𝑓 which may be related to 𝑇𝑏 through 9, 44: 

𝑇𝑒𝑓𝑓 =
𝑀𝑇 +𝑚𝑇𝑏
𝑀 +𝑚

(16) 

The physical importance of 𝑇𝑒𝑓𝑓 will be described below. Before continuing to 

higher-order approximations, it is important to establish a relationship between the base 

temperature 𝑇𝑏 (or 𝑇𝑒𝑓𝑓) and the field over concentration 𝐸/𝑛.  𝑇𝑏, as advanced 

previously, can be chosen to be the ion’s temperature in the laboratory frame, but any 

other choice could have been equally valid (and perhaps more optimal for convergence)22, 

39, 45-47. With this choice, 𝑇𝑏 is given by: 

1

2
𝑀〈𝑧2〉 =

3

2
𝑘𝑇𝑏 (17) 

Eq. (17) is equivalent to 〈𝜓0
(1)〉 = 0. Using eq. (13) with  〈𝜓0

(1)〉 will allow us to find an 

equation that establishes the relation between 𝐸/𝑛 (or ℰ) and 𝑇𝑏. 

Higher order approximations 

By repeated application of eq. (13) one can reach higher-order approximations that may 

be generally written as 48: 

〈𝐾〉𝑛 = 〈𝐾〉𝐼 [𝛼0 + 𝛼1 (
ℰ

𝑎00(1)
)
2

+ 𝛼2 (
ℰ

𝑎00(1)
)
4

+⋯] (18) 

where the number of higher-order terms depends on the approximation 𝑛. Here, the 𝛼𝑖 

coefficients are complicated functions of the matrix elements. For example, the second 



 

approximation may be given by (eq. (13)): 

〈𝜓1
(0)〉𝐼𝐼 =

ℰ

𝑎00(1)
−
𝑎01(1)

𝑎00(1)
〈𝜓1

(1)〉𝐼 (19) 

Note the second term on the right-hand side (neglected in the first approximation) appears 

from the summation term since it is now terminated at 𝑠 = 2 + 0 − 1 = 1. The first 

approximation for the Burnett function of the second term is given by: 

〈𝜓1
(1)〉𝐼 =

ℰ

𝑎11(1)
[
5

3
〈𝜓0

(1)〉𝐼 −
4

3
〈𝜓2

(0)〉𝐼] −
𝑎10(1)

𝑎11(1)
〈𝜓1

(0)〉𝐼 (20) 

In eq. (20), the additional last term on the right-hand side comes in this case from the 

summation when 𝑠 = 0. The functions in the brackets may now be given by: 

〈𝜓0
(1)〉𝐼 = −

2ℰ

𝑎11(0)
〈𝜓1

(0)〉𝐼 −
𝑎10(0)

𝑎11(0)
(21) 

〈𝜓2
(0)〉𝐼 =

2ℰ

𝑎00(2)
〈𝜓1

(0)〉𝐼 (22) 

The second term in eq. (21) comes from assuming the Maxwell condition for the first 

approximation where terms 𝑠 ≤ 𝑟 are added. However, having established eq. (17) 

(〈𝜓0
(1)〉 = 0), then eq. (21) is no longer needed. Putting all the terms together and 

simplifying, we arrive at the second approximation to the two-temperature theory: 

〈𝜓1
(0)〉𝐼𝐼 = 〈𝜓1

(0)〉𝐼

[
 
 
 
 1 +

𝑎01(1)𝑎10(1)

𝑎00(1)𝑎11(1)
+
5

3

𝑎01(1)𝑎10(0)

𝑎11(0)𝑎11(1)
+

(
ℰ

𝑎00(1)
)
2

 (
8

3

𝑎01(1)𝑎00(1)

𝑎00(2)𝑎11(1)
+
10

3

𝑎01(1)𝑎00(1)

𝑎11(0)𝑎11(1)
)
]
 
 
 
 

(23) 



 

or:

〈𝜓1
(0)〉𝐼𝐼 = 〈𝜓1

(0)〉𝐼 [1 +
𝑎01(1)𝑎10(1)

𝑎00(1)𝑎11(1)
+ (

ℰ

𝑎00(1)
)
2

 (
8

3

𝑎01(1)𝑎00(1)

𝑎00(2)𝑎11(1)
)] (24) 

when eq. (17) is considered. Eq. (19) now becomes an equation to establish the 

relationship between 𝐸/𝑛 and 𝑇𝑏. Note how aside from the quadratic term that depends 

on the field (
ℰ

𝑎00(1)
)
2

, an additional term appears to correct the expression for mobility 

even at the zero field. 

For the third approximation, we proceed in a similar way. The main equation may 

be given by: 

〈𝜓1
(0)〉𝐼𝐼𝐼 =

ℰ

𝑎00(1)
−
𝑎01(1)

𝑎00(1)
〈𝜓1

(1)〉𝐼𝐼 −
𝑎02(1)

𝑎00(1)
〈𝜓1

(2)〉𝐼 (25) 

where the third term appears due to the fact that the summation now terminates at 𝑠 =

3 + 0 − 1 = 2. The functions on the right-hand side may also include additional terms as 

well due to their higher order. As such: 

〈𝜓1
(1)〉𝐼𝐼 =

ℰ

𝑎11(1)
[
5

3
〈𝜓0

(1)〉𝐼 −
4

3
〈𝜓2

(0)〉𝐼] −
𝑎10(1)

𝑎11(1)
〈𝜓1

(0)〉𝐼 −
𝑎12(1)

𝑎11(1)
〈𝜓1

(2)〉𝐼 =

〈𝜓1
(1)〉𝐼 −

𝑎12(1)

𝑎11(1)
〈𝜓1

(2)〉𝐼 (26)

 

〈𝜓1
(2)〉𝐼 =

ℰ

𝑎22(1)
[
7

3
〈𝜓0

(2)〉𝐼 −
4

3
〈𝜓2

(1)〉𝐼] −
𝑎20(1)

𝑎22(1)
〈𝜓1

(0)〉𝐼 −
𝑎21(1)

𝑎22(1)
〈𝜓1

(1)〉𝐼 (27) 

〈𝜓0
(2)〉𝐼 = −

2ℰ

𝑎22(0)
〈𝜓1

(1)〉𝐼 −
𝑎20(0)

𝑎22(0)
−
𝑎21(0)

𝑎22(0)
〈𝜓0

(1)〉𝐼 (28) 

〈𝜓2
(1)〉𝐼 =

ℰ

𝑎11(2)
[
14

5
〈𝜓1

(1)〉𝐼 −
6

5
〈𝜓3

(0)〉𝐼] −
𝑎10(2)

𝑎11(2)
 〈𝜓2

(0)〉𝐼 (29) 



 

〈𝜓3
(0)〉𝐼 =

3ℰ

𝑎00(3)
〈𝜓2

(0)〉𝐼 (30) 

Note that 〈𝜓1
(2)〉𝐼 is only a first approximation instead of a second. This is due to the 

choice of reducing the approximation of the extra terms to 𝑛 + 𝑟 − 𝑠. If the second 

approximation were used instead in eq. (25), it would bring higher powers of 𝐸/𝑛. There 

is no particular reason to substitute the different functions (eqs. (26-30)) so as to provide 

the third approximation. The fourth approximation may equally be written to be: 

〈𝜓1
(0)〉𝐼𝑉 =

ℰ

𝑎00(1)
−
𝑎01(1)

𝑎00(1)
〈𝜓1

(1)〉𝐼𝐼𝐼 −
𝑎02(1)

𝑎00(1)
〈𝜓1

(2)〉𝐼𝐼 −
𝑎03(1)

𝑎00(1)
〈𝜓1

(3)〉𝐼 (31) 

Higher order expressions can be easily obtained but are omitted here as they start to 

become too large to handle analytically. 

Ion’s energy 

One of the most difficult endeavors when dealing with the two-temperature 

approximation is establishing the relation between the field over the concentration 𝐸/𝑛 

and the temperature 𝑇𝑏 (or similarly 𝑇𝑒𝑓𝑓)19, 39, 49-53. The reason for this is that the 

temperature 𝑇𝑏 is a parameter used in the base function to describe that the ion’s velocity 

distribution is skewed (displaced) by the drift velocity 𝑣𝑑 and its standard deviation is 

larger due to field-related heating over the thermal equilibrium with the gas 39, 54. 

Choosing 𝑇𝑏 = 𝑇𝑖𝑜𝑛 (temperature of the ion in the laboratory frame) establishes some 

important considerations. The first one is that 
3

2
𝑘𝑇𝑏 =

1

2
𝑚〈𝑧2〉 so that the ion’s energy 

can be directly related to 𝑇𝑏. One would expect therefore that calculating the ion’s energy 

moment 〈𝜓0
(1)〉 would be sufficient. As advanced previously the moment yields:  〈𝜓0

(1)〉 =

3

2
−
𝑀<𝑧2> 

2𝑘𝑇𝑏
= 0 . However, eq. (13) may still be used to provide a relation between ion 



 

temperature and field. The degree of accuracy used to establish a relation between 𝑇𝑏 and 

𝐸/𝑛 can be any, but it is preferred to match the order of approximation of mobility. For 

example, for the first approximation: 

1

2
𝑎11(0)〈𝜓0

(1)〉𝐼 = 0 = −ℰ〈𝜓1
(0)〉𝐼 −

1

2
𝑎10(0)〈𝜓0

(0)〉𝐼 (32) 

Or: 

ℰ = −
1

2

𝑎10(0)

〈𝜓1
(0)〉𝐼

→ ℰ2 = −
1

2
 𝑎10(0)𝑎00(1) (33) 

To physically understand the meaning of eq. (33), the expressions of the matrix 

elements (see their calculation below) must be introduced to yield a first approximation 

for 𝐸/𝑛:  

(
𝐸

𝑛
)
2

=
128

3

𝜇

𝑀 +𝑚
 
𝑘2𝑇𝑒𝑓𝑓

𝑒2
(
𝑇𝑏 − 𝑇

𝜋
)Ω(1,1)

2
(𝑇𝑒𝑓𝑓) (34) 

This result coincides with the result that comes from using Wannier’s equation1, 39: 

3

2
𝑘𝑇𝑏 =

3

2
𝑘𝑇 +

1

2
(𝑚 +𝑀)〈𝑤〉2 =

3

2
𝑘𝑇 +

1

2
(𝑚 +𝑀)〈𝐾〉𝐼

2
𝐸2 (35) 

This can be proven by using the solution from the first approximation to mobility 〈𝐾〉𝐼 =

𝑒

𝑀𝑛

1

𝑎00(1)
 in eq. (35) arriving at eq. (34). For the first approximation, it can also be shown 

from the relation between 𝑇𝑏 and 𝑇𝑒𝑓𝑓 that 
3

2
𝑘𝑇𝑒𝑓𝑓 =

3

2
𝑘𝑇 +

1

2
𝑚〈𝑤〉2 which has 

important consequences23, 55, 56. Eq. (35), while it is only a first-order approximation to 

the ion’s energy, it does provide a simple physical explanation of the two characteristic 

temperatures. 
1

2
𝑀〈𝑤〉2 corresponds to the total field energy required for the ion to go 

from thermal equilibrium to its drift velocity57-59 given it is the ion’s kinetic energy. This 



 

value is quite large so  𝑇𝑏 can easily be in the tens of thousands of Kelvin, and it is not a 

good measure of the ion’s thermodynamic temperature45, 60-63. However, subtracting the 

ion’s kinetic energy 
1

2
𝑀〈𝑤〉2, the rest can be regarded as its translational thermal 

molecular energy which corresponds to 
3

2
𝑘𝑇𝑒𝑓𝑓 and where  

1

2
𝑚〈𝑤〉2, corresponds to the 

thermal translational energy increase due to the higher relative velocity collisions with 

the gas. In this sense, the effective temperature is the ion’s equilibrium temperature due 

to the combination of the gas temperature and the effect of the field (assuming elastic 

collisions)64-67. 

For the second approximation, Viehland assumes that ℰ can be thought of having 

approximations in a similar way to the Burnett functions, e.g., ℰ𝑛. Viehland uses eq. (13) 

for 〈𝜓1
(0)〉 as well as 〈𝜓0

(1)〉 = 0 and combines them to arrive at24: 

2ℰ𝑛
𝑎00(1)

=∑
𝑎0𝑠(1)

𝑎00(1)

𝑛−1

𝑠=1
〈𝜓1

(𝑠)〉𝑛−𝑠 +

{
 
 

 
 [∑

𝑎0𝑠(1)

𝑎00(1)

𝑛−1

𝑠=1
〈𝜓1

(𝑠)〉𝑛−𝑠]

2

−

2 [
𝑎10(0)

𝑎00(1)
+∑

𝑎0𝑠(1)

𝑎00(1)

𝑛

𝑠=2
〈𝜓0

(𝑠)〉𝑛+1−𝑠]
}
 
 

 
 

1
2

(36) 

A different approach to obtain higher approximations of the ion’s energy is to use the 

recursive eq. (13) relation for 〈𝜓0
(1)〉 but assuming that ℰ is a constant to be calculated. 

This leads to a polynomial equation of powers of ℰ2. For example, for the second 

approximation: 

1

2
𝑎11(0)〈𝜓0

(1)〉𝐼𝐼 = 0 = −ℰ〈𝜓1
(0)〉𝐼 −

1

2
𝑎10(0) −

1

2
𝑎12(0)〈𝜓0

(2)〉𝐼 (37) 

ℰ𝐼𝐼
2 = −

1

2
 𝑎10(0)𝑎00(1) −

𝟏

𝟐
𝒂𝟎𝟎(𝟏)𝒂𝟏𝟐(𝟎)〈𝝍𝟎

(𝟐)〉𝑰 (38) 

Substituting the appropriate approximations leads to a quadratic equation for ℰ2: 



 

𝐴ℰ𝐼𝐼
4 + 𝐵ℰ𝐼𝐼

2 + 𝐶 = 0 (39) 

With: 

𝐴 =
8

3

𝑎12(0)

𝑎11(1)𝑎00(2)𝑎22(0)
 

𝐵 = 1 +
𝑎10(1)𝑎12(0)

𝑎11(1)𝑎22(0)
 

𝐶 =
1

2
𝑎00(1) (𝑎10(0) −

𝑎20(0)𝑎12(0)

𝑎22(0)
) 

The solution that is chosen for the field is the closest to that of the first 

approximation as it is expected that in eq. (38) the bold term is a small correction. Using 

the same process, higher-order terms may be obtained. For the third: 

ℰ〈𝜓1
(0)〉𝐼𝐼 = −

1

2
 𝑎10(0) −

𝟏

𝟐
𝒂𝟏𝟐(𝟎)〈𝝍𝟎

(𝟐)〉𝑰𝑰 −
𝟏

𝟐
𝒂𝟏𝟑(𝟎)〈𝝍𝟎

(𝟑)〉𝑰 (40) 

And where the full expanded equation for ℰ𝐼𝐼𝐼 has been added to the supplementary 

information. Whether this method or an iterative method is employed, the relation 

between 𝑇𝑏 and 𝐸/𝑛 should be established and it is expected to have only a scaling effect 

over the values of mobility as a function of the field.  

It is important to note that, regardless of how which method is employed, once ℰ 

is calculated for a particular order of approximation, its value is fixed in the expression 

for mobility as different values of ℰ would lead to different 𝑇𝑏 − 𝐸/𝑛 relations. 

Calculation of the matrix elements 

At this point, the matrix elements need to be calculated to obtain detailed expressions for 

mobility as a function of the field. However, the matrix elements can only be analytically 

calculated for extremely simple potentials (like that of Maxwell) assuming monoatomic 



 

ions. For the rest of the cases, the matrix elements’ expressions can be left as a quadrature 

that may be integrated numerically by calculating the deflection angle68-71. Aisbett 

produced a general formula to obtain all the different matrix elements (see supplementary 

information or refer to ref26). The formula provided by Viehland contains a small error (a 

factor of 2 corrected here) that will not affect the mobility results11. It is however 

unadvisable to use the formula without prior knowledge of how the matrix coefficients 

are calculated. This exercise also serves the purpose that it can be used with any other 

orthogonal functions for which general formulas do not exist. The procedure of how the 

calculation is performed is laid out initially, followed by explicit solutions of some of the 

terms. The rest of the terms needed up to the third approximation have been added to the 

supplementary information, where many of them are also explicitly calculated. 

Each matrix element must be obtained using eq. (9). While the denominator is 

given by eq. (7) (assuming 𝑚 = 0), the numerator is given by9: 

(𝜓𝑙
(𝑠), 𝒥𝜓𝑙

(𝑟)) = (
𝑀

2𝜋𝑘𝑇𝑏
)

3
2
(
𝑚

2𝜋𝑘𝑇
)

3
2
∫∫∫∫𝑒

(− 
𝑀𝑧2

2𝑘𝑇𝑏
)
𝑒
(−
𝑚𝑐2

2𝑘𝑇
)

× 𝜓𝑙
(𝑠)(𝑧)[𝜓𝑙

(𝑟)(𝑧) − 𝜓𝑙
(𝑟)(𝑧′)]|𝑧 − 𝑐|𝑏𝑑𝑏𝑑𝜖𝑑𝑧𝑑𝑐 (41)

 

Here, we have opted to use the more conventional vector notation instead of an index 

notation. The differential 𝑑𝑧 = 𝑑𝑧1𝑑𝑧2𝑑𝑧3 stands for a triple integral over the three 

velocity directions and × stands for a regular multiplication to indicate a change of line. 

It is assumed that the gas has a fixed Maxwell-Boltzmann velocity distribution (𝑓) at 

temperature 𝑇 72, 73. To make eq. (41) more accessible, assuming a two-body problem, the 

independent velocity variables are changed into the relative velocity 𝑔⃗ and the center of 

mass velocity 𝑊⃗⃗⃗⃗: 

𝑧 − 𝑐 = 𝑔⃗ 



 

𝑊⃗⃗⃗⃗ = (1 − 𝑒𝜇)𝑧 + 𝑒𝜇𝑐   ;    𝑒𝜇 =
𝑚

𝑚 +𝑀
 

so that the matrix elements become: 

𝑎𝑟𝑠(𝑙) =  
(2𝑙 + 1)𝑠! Γ (

3
2)

Γ (𝑙 + 𝑠 +
3
2)

(
𝑀

2𝜋𝑘𝑇𝑏
)

3
2
(
𝑚

2𝜋𝑘𝑇
)

3
2

×∫∫∫∫𝑒
(− (

𝑀
2𝑘𝑇𝑏

+
𝑚
2𝑘𝑇

)𝑊2+2𝜇(
1

2𝑘𝑇𝑏
−
1
2𝑘𝑇

)𝑊⃗⃗⃗⃗∙𝑔⃗⃗+
𝜇

𝑚+𝑀
(
𝑚

2𝑘𝑇𝑏
+
𝑀
2𝑘𝑇

)𝑔2)

× 𝜓𝑙
(𝑠)(𝑊⃗⃗⃗⃗ + 𝑒𝜇𝑔⃗)[𝜓𝑙

(𝑟)(𝑊⃗⃗⃗⃗ + 𝑒𝜇𝑔⃗) − 𝜓𝑙
(𝑟)(𝑊⃗⃗⃗⃗ + 𝑒𝜇𝑔⃗′)]𝑔𝑏𝑑𝑏𝑑𝜖𝑑𝑊⃗⃗⃗⃗𝑑𝑔⃗ (42)

 

Where the interpretation of the prime remains the same. Given the complexity of the 

exponential in eq. (42), it is advisable to make a change of variables that will make it 

quadratic: 

𝑊⃗⃗⃗⃗𝑞 = 𝑊⃗⃗⃗⃗ − 𝑓𝑔⃗   ; 𝑑𝑊⃗⃗⃗⃗𝑑𝑔⃗ = 𝑑𝑊⃗⃗⃗⃗𝑞𝑑𝑔⃗ 

where: 

𝑓 = 𝑒𝜇𝑑
𝑀(𝑇𝑏 − 𝑇)

𝑚𝑇𝑏
   ;      𝑑 =

𝑚𝑇𝑏
𝑀𝑇 +𝑚𝑇𝑏

 ; 𝑒𝜇 + 𝑓 = 𝑑 ; 𝑒𝜇𝑀 = 𝜇 

Dropping the 𝑞 in 𝑊𝑞 one arrives at:  

𝑎𝑟𝑠(𝑙) =  
(2𝑙 + 1)𝑠! Γ (

3
2
)

Γ (𝑙 + 𝑠 +
3
2)

(
𝑀

2𝜋𝑘𝑇𝑏
)

3
2
(
𝑚

2𝜋𝑘𝑇
)

3
2

×∫∫∫∫𝑒
(− (

𝑚
2𝑑𝑘𝑇

)𝑊2−(
𝜇

2𝑘𝑇𝑒𝑓𝑓
)𝑔2)

× 𝜓𝑙
(𝑠)(𝑊⃗⃗⃗⃗ + 𝑑𝑔⃗)[𝜓𝑙

(𝑟)(𝑊⃗⃗⃗⃗ + 𝑒𝜇𝑔⃗ + 𝑓𝑔⃗) − 𝜓𝑙
(𝑟)(𝑊⃗⃗⃗⃗ + 𝑒𝜇𝑔⃗

′ + 𝑓𝑔⃗)]𝑔𝑏𝑑𝑏𝑑𝜖𝑑𝑊⃗⃗⃗⃗𝑑𝑔⃗ (43)

 

Eq. (43) may be used as the basis for the matrix element calculations. After 

simplifications, the matrix elements may be expressed using conventional collision 

integrals which are given by13, 18: 

Ω(𝑙,𝑠)(𝑇) =
2

(𝑠 + 1)!
(
𝜇

2𝑘𝑇
)
𝑠+2

∫ 𝑒−(
𝜇
2𝑘𝑇

)𝑔2𝑔2𝑠+3𝑄(𝑙)(𝑔)𝑑𝑔
∞

0

(44) 



 

𝑄(𝑙) = 2𝜋 (
2(𝑙 + 1)

2𝑙 + 1 − (−1)𝑙
)∫ (1 − cos𝑙 𝜒(𝑏))𝑏𝑑𝑏

∞

0

 (45) 

The coefficients in eqs. (44-45) are traditionally added so that the value of both 

integrals is 𝜋𝑑2 for a hard sphere of diameter of influence (radius of gas plus ion) d. The 

calculation of the matrix elements is now tedious but straightforward. To start, several 

examples are shown which are relevant to important discussions, while the rest of the 

calculations and a table will be added to the supplementary information which includes 

further elements not previously calculated. 

Calculation of 𝒂𝟎𝟎(𝟏) 

Given that 𝜓1
(0)
= 𝑤 (

𝑀

2𝑘𝑇𝑏
)
1/2

= 𝑧1 (
𝑀

2𝑘𝑇𝑏
)
1/2

 with 𝑧 = (𝑧1 = 𝑤, 𝑧2, 𝑧3) and the 

following expressions: 

 
(2𝑙+1)𝑠!Γ(

3

2
)

Γ(𝑙+𝑠+
3

2
)
|𝑙=1,𝑠=0 = 2, 

𝜓1
(0)(𝑊⃗⃗⃗⃗ + 𝑑𝑔⃗)[𝜓1

(0)(𝑊⃗⃗⃗⃗ + 𝑒𝜇𝑔⃗ + 𝑓𝑔⃗) − 𝜓1
(0)(𝑊⃗⃗⃗⃗ + 𝑒𝜇𝑔⃗

′ + 𝑓𝑔⃗)]

=
𝑒𝜇𝑀(𝑔1 − 𝑔1

′ )(𝑑𝑔1 +𝑊1)

2𝑘𝑇𝑏
, 

one arrives at the integral to solve the matrix element: 

𝑎00(1) = 2 (
𝑀

2𝜋𝑘𝑇𝑏
)

3
2
(
𝑚

2𝜋𝑘𝑇
)

3
2

×∫∫∫∫𝑒
(− (

𝑚
2𝑑𝑘𝑇

)𝑊2−(
𝜇

2𝑘𝑇𝑒𝑓𝑓
)𝑔2) 𝑒𝜇𝑀(𝑔1 − 𝑔1

′ )(𝑑𝑔1 +𝑊1)

2𝑘𝑇𝑏
𝑔𝑏𝑑𝑏𝑑𝜖𝑑𝑊⃗⃗⃗⃗𝑑𝑔⃗ (46)

 

One can now integrate the center of mass velocity W from −∞ to ∞ for all three 

coordinates. This yields: 



 

𝑎00(1) = 2 (
𝑀

2𝜋𝑘𝑇𝑏
)

3
2
(
𝑚

2𝜋𝑘𝑇
)

3
2

×∫∫∫𝑒
(−(

𝜇
2𝑘𝑇𝑒𝑓𝑓

)𝑔2) √2𝑑𝑒𝜇𝑀

𝑘𝑇𝑏
 (
𝜋𝑑𝑘𝑇

𝑚
)

3
2
(𝑔1 − 𝑔1

′ )𝑔1𝑔𝑏𝑑𝑏𝑑𝜖𝑑𝑔⃗ (47)

 

To continue the integration, it is necessary to define proper general vectors for 𝑔⃗ 

and 𝑔⃗′. Using cartesian coordinates and spherical angles, the relative velocity vector may 

be given by: 𝑔⃗ = (𝑔1, 𝑔2, 𝑔3) = 𝑔(𝑐𝑜𝑠𝜃𝑔 , 𝑠𝑖𝑛𝜃𝑔𝑐𝑜𝑠𝜙𝑔, 𝑠𝑖𝑛𝜃𝑔𝑠𝑖𝑛𝜙𝑔), where 𝜃𝑔 and 𝜙𝑔 

are the azimuthal and polar angle respectively. Due to the symmetry of elastic collisions 

and conservation of energy, 𝑔⃗′ can be interpreted at this point as the relative velocity of 

reemission of the trajectory of a gas molecule with the ion fixed in a centered position as 

shown in Figure 1. If the gas molecule trajectory direction was inverted, the result would 

be a replenishment of class 𝑔⃗ velocities from class 𝑔⃗′. Figure 1 can also be used to 

understand the deflection angle 𝜒 and the out-of-plane angle 𝜖 that can be used for the 

definition of 𝑔⃗′:  

𝑔⃗′ = 𝑔(cos 𝜒 𝑔̂ + sin 𝜒 cos 𝜖 𝑒̂2 + sin 𝜒 sin 𝜖 𝑒̂3) (48) 

[Figure 1 near here]  

where 𝑔̂ is a unit vector in the direction of 𝑔⃗ and 𝑒̂2 𝑎𝑛𝑑 𝑒̂3 are unit vectors perpendicular 

to 𝑔̂ and to each other. Note that due to the conservation of energy in the collision 𝑔⃗ and 

𝑔⃗′ have the same magnitude.  In cartesian coordinates, the second and third terms in eq. 

(48) may be given by: 

𝑒2⊥ = 𝑔(0,− sin(𝜙𝑔) , cos(𝜙𝑔)) cos 𝜖  sin 𝜒 (49) 

𝑒3⊥ = 𝑔(sin(𝜃𝑔) , − cos(𝜙𝑔) cos(𝜃𝑔) , − cos(𝜃𝑔) sin(𝜙𝑔)) sin 𝜒 sin 𝜖 (50) 



 

which are much simpler and more efficient to use than those produced by Vincenti and 

Kruger74. Substituting the incident and reemitted relative velocity vectors and integrating 

eq. (47) for 𝜖 between 0 and 2𝜋 yields: 

𝑎00(1) = 2 (
𝑀

2𝜋𝑘𝑇𝑏
)

3
2 𝑑5/2𝑒𝜇𝑀

2𝑘𝑇𝑏
 ∫∫2𝜋(1 − 𝑐𝑜𝑠𝜒)𝑏𝑑𝑏 𝑒

(−(
𝜇

2𝑘𝑇𝑒𝑓𝑓
)𝑔2)

𝑔1
2𝑔𝑑𝑔⃗ 

Using the relation that 
𝑀𝑑

𝑘𝑇𝑏
=

𝜇

𝑘𝑇𝑒𝑓𝑓
 and 𝑑𝑔1𝑑𝑔2𝑑𝑔3 = 𝑔

2 sin 𝜃𝑔 𝑑𝜙𝑔𝑑𝜃𝑔𝑑𝑔: 

𝑎00(1) =
2

𝜋3/2 
(

𝜇

2𝑘𝑇𝑒𝑓𝑓
)

5
2

 ∫ [∫ 2𝜋(1
∞

0

∞

0

− 𝑐𝑜𝑠𝜒)𝑏𝑑𝑏]∫ ∫ 𝑒
(−(

𝜇
2𝑘𝑇𝑒𝑓𝑓

)𝑔2)
𝑔5 cos2 𝜃𝑔 sin 𝜃𝑔 𝑑𝜙𝑔𝑑𝜃𝑔𝑑𝑔

2𝜋

0

𝜋

0

 

where the term in brackets is 𝑄(1)(𝑔). Integrating over the velocity angles and 

multiplying and dividing by (
𝜇

2𝑘𝑇𝑒𝑓𝑓
)
1/2

: 

𝑎00(1) =
8

3
𝑒𝜇 (

2𝑘𝑇𝑒𝑓𝑓

𝜋𝜇
)

1
2

[(
𝜇

2𝑘𝑇𝑒𝑓𝑓
)

3

 ∫ 𝑒
(−(

𝜇
2𝑘𝑇𝑒𝑓𝑓

)𝑔2)
𝑔5𝑄(1)(𝑔)𝑑𝑔

∞

0

] (51) 

The term in brackets corresponds to Ω(1,1)(𝑇𝑒𝑓𝑓) so that: 

𝑎00(1) =
8

3
𝑒𝜇√

2𝑘𝑇𝑒𝑓𝑓

𝜋𝜇
 Ω(1,1)(𝑇𝑒𝑓𝑓) (52) 

A dimensionless matrix coefficient can be obtained by dividing eq. (52) by 

𝑒𝜇√
2𝑘𝑇𝑒𝑓𝑓

𝜋𝜇
 Ω

(1,1)
(𝑇𝑒𝑓𝑓):  

𝑎00
∗ (1) =

𝑎00(1)

𝑒𝜇√
2𝑘𝑇𝑒𝑓𝑓
𝜋𝜇  Ω(1,1)(𝑇𝑒𝑓𝑓) 

=
8

3
(53)

 



 

This coefficient is fundamental in obtaining the first approximation to mobility as 

shown in eq. (14). 

Calculation of 𝒂𝟎𝟐(𝟏) 

Given the following identities: 

 𝜓1
(0) = 𝑤 (

𝑀

2𝑘𝑇𝑏
)

1

2
 , 𝜓1

(2) =
1

2
𝑤 (

𝑀

2𝑘𝑇𝑏
)

1

2
[
35

4
− 7

𝑀

2𝑘𝑇𝑏
𝑧2 + (

𝑀

2𝑘𝑇𝑏
)
2

𝑧4], 

 𝑧 = (𝑧1 = 𝑤, 𝑧2, 𝑧3). 

(2𝑙 + 1)𝑠! Γ (
3
2)

Γ (𝑙 + 𝑠 +
3
2)

|𝑙=1,𝑠=2 =
16

35
 

 𝜓1
(2)
(𝑊⃗⃗⃗⃗ + 𝑑𝑔⃗)[𝜓1

(0)
(𝑊⃗⃗⃗⃗ + 𝑒𝜇𝑔⃗ + 𝑓𝑔⃗) − 𝜓1

(0)
(𝑊⃗⃗⃗⃗ + 𝑒𝜇𝑔⃗

′ + 𝑓𝑔⃗)] =

𝑒𝜇𝑀(𝑔1−𝑔1
′)(𝑑𝑔1+𝑊1)(

𝑑4𝑀2𝑔2+35𝑘2𝑇𝑏
2+4𝑑3𝑀2𝑔2𝑔⃗⃗∙𝑊⃗⃗⃗⃗−14𝑘𝑀𝑇𝑏𝑊

2+

𝑀2𝑊4+4𝑑𝑀𝑔⃗⃗∙𝑊⃗⃗⃗⃗(𝑀𝑊2−7𝑘𝑇𝑏)+2𝑑
2𝑀(𝑀𝑔2𝑊2−7𝑔2𝑘𝑇𝑏+2𝑀(𝑔⃗⃗∙𝑊⃗⃗⃗⃗)(𝑔⃗⃗∙𝑊⃗⃗⃗⃗)

) 

16𝑘3𝑇𝑏
3  

Substituting the above into eq. (43) and integrating over the center of mass velocities and 

over the polar angle 𝜖 yields: 

𝑎02(1) =
4

35𝜋
1
2

𝑒𝜇 (
𝜇

2𝑘𝑇𝑒𝑓𝑓
)

5
2

∫∫𝑒
(−(

𝜇
2𝑘𝑇𝑒𝑓𝑓

)𝑔2) 1

𝑚2𝑘2𝑇𝑏
2
[𝑑2𝑀2(𝑑2𝑔2𝑚2

+ 14𝑑𝑔2𝑘𝑚𝑇 + 35𝑘2𝑇2) − 14𝑑𝑘𝑚𝑀𝑇𝑏(𝑑𝑔
2𝑚 + 5𝑘𝑇)

+ 35𝑚2𝑘2𝑇𝑏
2]𝑔1

2(1 − cos(𝜒))𝑔2𝜋𝑏𝑑𝑏𝑑𝑔⃗ 

Integrating over the velocity angles and arranging: 

𝑎02(1) =
8

105𝜋
1
2

𝑒𝜇 (
𝜇

2𝑘𝑇𝑒𝑓𝑓
)

5
2

∫∫𝑒
(−(

𝜇
2𝑘𝑇𝑒𝑓𝑓

)𝑔2)

× [𝑑2𝑔4 (
𝑑𝑀

𝑘𝑇𝑏
)
2

+ 14𝑑𝑔2 (
𝑑𝑀

𝑘𝑇𝑏
) (
𝑀𝑇𝑑

𝑚𝑇𝑏
) + 35 (

𝑀𝑇𝑑

𝑚𝑇𝑏
)
2

− 14(𝑑𝑔2 (
𝑑𝑀

𝑘𝑇𝑏
) + 5 (

𝑀𝑇𝑑

𝑚𝑇𝑏
)) + 35] 𝑔5(1 − cos(𝜒))2𝜋𝑏𝑑𝑏𝑑𝑔 

Using the CCS relations and the identities 
𝑀𝑑

𝑘𝑇𝑏
=

𝜇

𝑘𝑇𝑒𝑓𝑓
 and 

𝑑𝑀𝑇

𝑚𝑇𝑏
= (1 − 𝑑) one can write: 



 

𝑎02(1) =
8

105
𝑒𝜇 (

2𝑘𝑇𝑒𝑓𝑓

𝜇𝜋
)

1
2

Ω(1,1)[48𝑑2
Ω(1,3)

Ω(1,1)
+ 84𝑑(1 − 𝑑)

Ω(1,2)

Ω(1,1)
+ 35(1 − 𝑑)2

− 84𝑑
Ω(1,2)

Ω(1,1)
− 70(1 − 𝑑) + 35] 

Simplifying, rearranging, and using the common relations 𝐶∗ =
Ω(1,2)(𝑇𝑒𝑓𝑓)

Ω(1,1)(𝑇𝑒𝑓𝑓)
 and 𝐵∗ =

5𝐶∗ − 4
Ω(1,3)(𝑇𝑒𝑓𝑓)

Ω(1,1)(𝑇𝑒𝑓𝑓)
: 

𝑎02(1) = −
8𝑑2

105
𝑒𝜇 (

2𝑘𝑇𝑒𝑓𝑓

𝜇𝜋
)

1
2

Ω(1,1)[3(4𝐵∗ − 5) + 4(6𝐶∗ − 5)] 

Hence: 

𝑎02
∗ (1) = −

8𝑑2

105
[3(4𝐵∗ − 5) + 4(6𝐶∗ − 5)] (54) 

The expressions are written following the behavior of the Maxwell model and the 

reason for the choice will be clarified in the discussion below. 

Calculation of 𝒂𝟐𝟏(𝟎) 

Given that 𝜓0
(1)
=

3

2
− 𝑧2 (

𝑀

2𝑘𝑇𝑏
) , 𝜓0

(2)
=

1

2
(
15

4
+

𝑀2𝑧4

4𝑘2𝑇𝑏
2 −

5𝑀𝑧2

2𝑘𝑇𝑏
)  ,   𝑧 = (𝑧1 = 𝑤, 𝑧2, 𝑧3) 

(2𝑙 + 1)𝑠! Γ (
3
2)

Γ (𝑙 + 𝑠 +
3
2)

|𝑙=0,𝑠=1 =
2

3
 

𝜓0
(1)(𝑊⃗⃗⃗⃗ + 𝑑𝑔⃗)[𝜓0

(2)(𝑊⃗⃗⃗⃗ + 𝑒𝜇𝑔⃗ + 𝑓𝑔⃗) − 𝜓0
(2)(𝑊⃗⃗⃗⃗ + 𝑒𝜇𝑔⃗

′ + 𝑓𝑔⃗)]

= −
𝑒𝜇𝑀(𝑓(𝑔2 − 𝑔⃗ ∙ 𝑔⃗′) + 𝑊⃗⃗⃗⃗ ∙ (𝑔⃗ − 𝑔⃗′)) (𝑀(𝑑2𝑔2 +𝑊2 + 2𝑑(𝑔⃗ ∙ 𝑊⃗⃗⃗⃗)) 

8𝑘3𝑇𝑏
3 (𝑀 (2𝑒𝜇𝑔

2

+ 2𝑒𝜇 (𝑓(𝑔
2 + 𝑔⃗ ∙ 𝑔⃗′) + 𝑊⃗⃗⃗⃗ ∙ (𝑔⃗ + 𝑔⃗′)) + 2(𝑓2𝑔2 +𝑊2 + 2𝑓𝑔⃗ ∙ 𝑊⃗⃗⃗⃗)) − 10𝑘𝑇𝑏)  



 

Integrating over the center of mass velocities, over epsilon, and over the velocity 

angles yields: 

𝑎21(0) = −
4

3𝑑𝜋
1
2

𝑒𝜇 (
𝜇

2𝑘𝑇𝑒𝑓𝑓
)

5
2

∫∫𝑒
(−(

𝜇
2𝑘𝑇𝑒𝑓𝑓

)𝑔2) 1

𝑚2𝑘2𝑇𝑏
2

× [5𝑑3𝑘𝑀2𝑇(𝑓𝑔2𝑚 + 2𝑘𝑇) + 3𝑑𝑓𝑘𝑚𝑀𝑇 ((𝑒𝜇
2 + 𝑓2)𝑔2𝑀 − 10𝑘𝑇𝑏)

− 3𝑓𝑘𝑚2𝑇𝑏 ((𝑒𝜇
2 + 𝑓2)𝑔2𝑀 − 5𝑘𝑇𝑏)

+ 𝑑2𝑀(𝑀(𝑓(𝑒2 + 𝑓2)𝑔4𝑚2 + 2(𝑒2 + 3𝑓2)𝑔2𝑘𝑚𝑇 + 25𝑓𝑘2𝑇2)

− 5𝑘𝑚𝑇𝑏(𝑓𝑔
2𝑚 + 2𝑘𝑇))

+ 𝑒𝜇𝑓𝑔
2𝑚𝑀(𝑑𝑀(𝑑𝑓𝑔2𝑚 + 4𝑑𝑘𝑇 + 3𝑓𝑘𝑇) − 3𝑓𝑘𝑚𝑇𝑏)(1

+ cos(𝜒))] 𝑔5(1 − cos(𝜒))2𝜋𝑏𝑑𝑏𝑑𝑔 

  

Rearranging: 

𝑎21(0) = −
4

3𝑑𝜋
1
2

𝑒𝜇 (
𝜇

2𝑘𝑇𝑒𝑓𝑓
)

5
2

∫∫𝑒
(−(

𝜇
2𝑘𝑇𝑒𝑓𝑓

)𝑔2)
[5 (

𝑑𝑀

𝑘𝑇𝑏
) (
𝑀𝑇𝑑

𝑚𝑇𝑏
) 𝑓𝑑𝑔2

+ 10 (
𝑀𝑇𝑑

𝑚𝑇𝑏
)
2

𝑑 + 3 (
𝑑𝑀

𝑘𝑇𝑏
) (
𝑀𝑇𝑑

𝑚𝑇𝑏
)
𝑓

𝑑
(𝑒𝜇

2 + 𝑓2)𝑔2 − 30 (
𝑀𝑇𝑑

𝑚𝑇𝑏
)𝑓

− 3 (
𝑑𝑀

𝑘𝑇𝑏
)
𝑓

𝑑
(𝑒𝜇

2 + 𝑓2)𝑔2 − 15𝑓 + (
𝑑𝑀

𝑘𝑇𝑏
)
2

𝑓(𝑒𝜇
2 + 𝑓2)𝑔4

+ 2(
𝑑𝑀

𝑘𝑇𝑏
) (
𝑀𝑇𝑑

𝑚𝑇𝑏
) (𝑒𝜇

2 + 3𝑓2)𝑔2 + 25 (
𝑀𝑇𝑑

𝑚𝑇𝑏
)
2

𝑓 − 5 (
𝑑𝑀

𝑘𝑇𝑏
)𝑑𝑓𝑔2

− 10 (
𝑀𝑇𝑑

𝑚𝑇𝑏
) 𝑑

+ 𝑒𝜇𝑓 ((
𝑑𝑀

𝑘𝑇𝑏
)
2

𝑓𝑔4 + 4(
𝑑𝑀

𝑘𝑇𝑏
) (
𝑀𝑇𝑑

𝑚𝑇𝑏
) 𝑔2 + 3(

𝑑𝑀

𝑘𝑇𝑏
) (
𝑀𝑇𝑑

𝑚𝑇𝑏
)
𝑓

𝑑
𝑔2

− 3(
𝑑𝑀

𝑘𝑇𝑏
)
𝑓

𝑑
𝑔2 ) (1 + cos(𝜒))] 𝑔5(1 − cos(𝜒))2𝜋𝑏𝑑𝑏𝑑𝑔 



 

  

Using CCS expressions: 

𝑎21(0) = −
4

3𝑑
𝑒𝜇 (

2𝑘𝑇𝑒𝑓𝑓

𝜇𝜋
)

1
2

Ω(1,1) [𝑒𝜇𝑓 (32𝑓
Ω(2,3)

Ω(1,1)
+ 16(1 − 𝑑)

Ω(2,2)

Ω(1,1)

+ 12(1 − 𝑑)
𝑓

𝑑

Ω(2,2)

Ω(1,1)
− 12

𝑓

𝑑

Ω(2,2)

Ω(1,1)
) + 48𝑓(𝑒𝜇

2 + 𝑓2)
Ω(1,3)

Ω(1,1)

+ (12(1 − 𝑑)(𝑒𝜇
2 + 3𝑓2) − 18𝑓(𝑒𝜇

2 + 𝑓2) − 30𝑑2𝑓)
Ω(1,2)

Ω(1,1)

+ 10𝑑(1 − 𝑑)2 − 30(1 − 𝑑)𝑓 + 15𝑓 + 25(1 − 𝑑)2𝑓 − 10(1 − 𝑑)𝑑] 

Using the known ratio expression and 𝐸∗ =
𝛺(2,3)

𝛺(2,2)
 and 𝐴∗ =

𝛺(2,2)

𝛺(1,1)
: 

𝑎21(0) = −
4

3𝑑
𝑒𝜇 (

2𝑘𝑇𝑒𝑓𝑓

𝜇𝜋
)

1
2

Ω(1,1) [4𝑒𝜇𝑓𝐴
∗ (𝑓(8𝐸∗ − 7) + 4(1 − 𝑒𝜇))

− 3𝑓(𝑒𝜇
2 + 𝑓2)(4𝐵∗ − 5)

+ 2(𝑑2(1 − 𝑑) − 𝑓𝑑(2 − 3𝑑 + 11𝑓) + 𝑓2(4 + 7𝑓))(6𝐶∗ − 5)

+ 10𝑓(1 − 2𝑒𝜇)
2
] 

Hence: 

𝑎21
∗ (0) = −

4

3𝑑

[
 
 
 4𝑒𝜇𝑓𝐴

∗ (𝑓(8𝐸∗ − 7) + 4(1 − 𝑒𝜇)) − 3𝑓(𝑒𝜇
2 + 𝑓2)(4𝐵∗ − 5) +

2(𝑑2(1 − 𝑑) − 𝑓𝑑(2 − 3𝑑 + 11𝑓) + 𝑓2(4 + 7𝑓))

(6𝐶∗ − 5) + 10𝑓(1 − 2𝑒𝜇)
2

]
 
 
 

(55) 

 This matrix element contained an error in previous works by Viehland and 

Mason11 that has been corrected here. The calculation for other matrix elements and their 

final format is given in the supplementary information. Several codes are available from 

the authors to calculate other matrix elements. 



 

Results and discussion 

While the two-temperature theory has been validated for single atoms in monoatomic 

gases37, 45, 75-77, it has not been comprehensively studied for all-atom models and all fields 

until recently1, 78, 79. The reason is that there is an expectancy that the elastic collision 

assumption would not hold at high enough fields8, 45, 80. In short, upon a highly energetic 

collision between ion and gas, the expectancy is that there would be an exchange of 

translational energy with internal degrees of freedom (rotational and vibrational), making 

the collision effectively inelastic and establishing an equilibrium temperature for the ion, 

that one can refer to as internal temperature 𝑇𝑖 and that could be different from the 

effective temperature here established. This internal temperature may be defined as the 

temperature at which the internal energy difference pre- and post-collision is zero on 

average.  

For monoatomic gases with molecular ions, once this new translational-internal 

equilibrium is established, the expectancy is that the collisions may be once again 

regarded as elastic on average, and 𝑇𝑖 = 𝑇𝑒𝑓𝑓′; since the energy does not have any means 

of escaping the ion (neglecting radiation) other than through the translational degrees of 

freedom of the gas molecule8, 81. This remains true as long as the relaxation time of the 

deformation caused by the ion-gas collision is smaller than the time between two 

consecutive collisions.  

For molecular gases, however, the internal degrees of freedom of the gas molecule 

will provide means for some of the energy to escape making the collision inevitably 

always inelastic. Under such circumstances, it is unadvisable to use the two-temperature 

theory without an inelastic correction at least at moderate to high fields, and other 

methods are preferred24, 82. Among other possibilities, although not the focus of this work, 

one can use the Wang-Uhlenbeck-de Boer (WUB) equation (which is an extension of the 



 

Boltzmann equation that takes into account the internal degrees of freedom). Another 

option is to simply assume an inelasticity or accommodation effect to describe the loss of 

energy81. This inelasticity coefficient is difficult to obtain theoretically but it can be 

obtained experimentally80, 83, 84.  

This work will therefore focus on the two-temperature theory for monoatomic 

gases, leaving the study of molecular gases for when sufficient data is available to study 

inelasticity appropriately. 

Regarding the success of 𝑻𝒃 for the two-temperature theory 

The success of the two-temperature arguably relies on the choice of 𝑇𝑏 for the base 

function. In general, however, one could presume that a more accurate basis function 

would instead include a drift velocity and an effective temperature such as: 

𝐺(0) = 𝑒
− 
𝑀(𝑧𝑖−𝑣𝑑𝑖)

2

2𝑘𝑇𝑒𝑓𝑓  

However, the reason for the success of 𝐹(0) and not 𝐺(0) is not clear until the 

matrix elements are calculated. When the product of 𝐹(0) and 𝑓 is written in terms of 

relative kinetic energy, the moment integrals show a distribution that can be approximated 

as: 

𝑒
− 

𝜇𝑔2

2𝑘𝑇𝑒𝑓𝑓(1 + 𝜙(𝑔)) 

where 𝜙(𝑔) is a function that depends on the order of approximation. From a momentum 

transfer perspective, this new distribution is no different from Chapman-Enskog 

linearization of 𝐺(0)𝑓 (see A.27-28 from Larriba and Prell9, 18). In all, since 𝑇𝑏 includes 

the field energy (it relates to the ion’s energy in the lab reference frame), having 𝑇𝑏 in the 



 

basis function includes both the widening of the distribution, which is related to 𝑇𝑒𝑓𝑓, and 

the translation of the distribution to the average velocity 𝑣𝑑, as was demonstrated by 

arriving at Wannier’s equation for the ion’s energy. 

Effect of successive high field approximations for hard spheres and different 

mass ratios 

Depending on the choice of truncation scheme for both mobility and energy, the results 

of the approximations may vary. Among the multiple options, we have opted to use 𝑛 on 

the first term of the summation in eq. (13), the use of eq. (36) to calculate ℰ and the same 

approximation is used for both mobility and energy. Finally, our scheme uses 〈𝜓0
(1)〉𝑖 =

0 for all approximations and not only the highest approximation. The rigid sphere case 

corresponds to the case where the ion is large enough that attractive ion potentials are 

negligible, and the physical size of the ion dominates, greatly simplifying the interaction. 

For a hard sphere, all the CCS ratios, e.g., 𝐶∗, 𝐴∗, …, can be substituted by 1, making the 

calculation extremely fast for any approximation24, once the appropriate matrix elements 

are known. A dimensionless parameter is used to represent the field such as1: 

ℰ∗ = (
3𝜋1/2

16𝑘𝑇
) (
𝑚 +𝑀

𝑀
)
1/2

(
𝑧𝑒

𝜋𝑑2
)
𝐸

𝑛
 

The results are shown in Figure 2. The y-axis represents the deviation of 

successive approximations with respect to the first approximation in terms of percentage 

up to the fourth approximation (the first approximation is therefore the x-axis). As the 

matrix elements depend on the masses of both ion and gas, the results are shown for 

different mass ratios. It is interesting to see the variation from 𝑀/𝑚 < 1 to 𝑀/𝑚 > 1. 

For low mass ratios, the variation from the first approximation is largest at low fields. 

The opposite occurs for high mass ratios where the largest variation occurs at high fields. 



 

Two types of convergence can be observed. As 𝑀/𝑚 → ∞ the deviation seems to reach 

an asymptote as there is little difference between the 100 and 1000 cases. In terms of 

overall convergence, the difference in the deviation between successive approximations 

seems to become smaller with higher approximations. For this reason, and the fact that 

the ions of interest in ion mobility and analytical chemistry follow ratios 𝑀/𝑚 > 1 and 

ℰ∗ ≤ 10, one can conclude that the 4th approximation should be sufficient to achieve 

acceptable results for all fields. It is important to mention that our results, although 

qualitatively similar, vary from those of Viehland 11. 

[Figure 2 near here] 

The Maxwell Model and Collision Cross Section ratios 

One of the most important criteria for truncation schemes used in the two-

temperature theory relies on the assumption that a general solution for an ion gas pair will 

be similar to that of the Maxwell Model (a 𝑟−4 interaction)10. The Maxwell Model was 

initially proposed for vanishing fields (𝐸/𝑛 → 0) for the one-temperature theory where 

off-diagonal coefficients of the matrix elements are zero25. For the two-temperature, it 

has been stated that off-diagonal terms do survive although only those where 𝑠 ≤ 𝑟. It is 

therefore important to study how molecular ions with a physical size and a 4-6-12 

potential interaction evolve in comparison to the Maxwell model. This is preferably done 

in terms of ratios of collision cross sections as their value is well known for the Maxwell 

model. A particularity of the Maxwell model is that the 𝑄(𝑙) integral is proportional to 1/g 

which can be used to obtain the ratios. For example, for 𝐶∗, 𝐵∗ 𝑜𝑟 𝐴∗: 



 

𝐶∗ =
Ω(1,2)(𝑇𝑒𝑓𝑓)

Ω(1,1)(𝑇𝑒𝑓𝑓)
=

2

(3)!
(

𝜇

2𝑘𝑇𝑒𝑓𝑓
)

4

∫ 𝑒
−(

𝜇
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(54)

𝐵∗ = 5𝐶∗ − 4
Ω(1,3)(𝑇𝑒𝑓𝑓)

Ω(1,1)(𝑇𝑒𝑓𝑓)
= 5𝐶∗ − 4
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(4)!
(

𝜇
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𝐴∗ =
Ω(2,2)(𝑇𝑒𝑓𝑓)
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where 𝑄∗(𝑙) = 𝑔𝑄(𝑙) and independent of 𝑔. The rest of the ratios can be equally calculated 

and are provided in the supplementary information. The ratios 𝐴∗ =
Ω
(2,2)(𝑇𝑒𝑓𝑓)

Ω(1,1)(𝑇𝑒𝑓𝑓)
 and 𝐹∗ =

Ω
(3,3)(𝑇𝑒𝑓𝑓)

Ω(1,1)(𝑇𝑒𝑓𝑓)
 are ratios whose numerical values depend on the angular pattern (see eq. 56) 

while the rest of the ratios have established values.  

The general expressions for the matrix elements 𝑎𝑟𝑠
∗ (𝑙) can then be written 

following the expectancy that general ratios are close to Maxwell model ratios results. It 

is then easy to see why those matrix elements with 𝑠 > 𝑟 are zero for the Maxwell model 

(as advanced previously). For one of the examples above, 𝑎02
∗ (1) = −

8𝑑2

105
[3(4𝐵∗ − 5) +

4(6𝐶∗ − 5)], in which 𝑠 > 𝑟, the matrix element will be zero for the Maxwell model. 



 

Elements with 𝑠 ≤ 𝑟 always have a nonzero extra term, e.g., 10𝑓(1 − 2𝑒𝜇)
2
 for 𝑎21

∗ (0). 

The rest of the ratios are provided in the supplementary information. 

It would be interesting to study the deviation from the expected Maxwellian 

values of the ratios for small ions in He gas. The results for a few of the ratios are shown 

in Figure 3 for 𝑂+ with a 4-6-12 potential. Very noticeable is that all ratios follow a 

similar tendency. They start below the Maxwell assumption and increase asymptotically 

to 1 as 𝐸/𝑛 increases. At low field, the oxygen ion acts very similar to how a 4-interaction 

potential would, with an additional effect from the 6-interaction potential. As the field 

increases, the ion starts acting more like a hard sphere due to the 12-interaction potential 

that becomes dominant. As such the CCS ratio become close to 1 the higher the field 

interaction is13. In all, note that for low fields, 0-40Td, substitution of the ratios for their 

Maxwell value is a decent approximation for monoatomic ions as shown by Mason and 

McDaniel16. As the ion becomes larger, however, the 4-6 interaction effect should 

become weaker compared to the effect of the physical size (or 12-interaction) even at 

lower fields. This can be observed for 𝐶∗ in Figure 4 for ions of increasing size, namely 

𝑂+, 𝐻2𝑂
+, 𝐶𝐻5

+ and Tryphenilene. The larger the ion, the closer to 1 the ratios are and 

the further away from the Maxwell effect. It is therefore not recommended to use 

Maxwell ratios for molecular ions and perform the actual calculations. 

[Figure 3 and Figure 4 near here] 

Calculations for small ions and rigid spheres for arbitrary fields 

An ideal situation for the two-temperature theory is that of two monoatomic entities, ion 

and gas interacting together. Under such circumstances, the collisions may be regarded 

as fully elastic, and the theory should be able to describe the collision quite accurately in 

the instances where quantum effects may be regarded as negligible8, 13, 85. For such cases, 



 

a 4-6-12 interaction potential between two monoatomic entities combines the most 

important long-range effects as well as the repulsion core. This interaction is typically 

expected to be quite accurate for all fields as long as the Lennard-Jones parameters are 

optimized. Given that the matrix elements heavily depend on the mass, one would also 

like to compare the different possible approximations, and their effect for different mass 

ratios and different potential interactions. Figure 5 A-E shows the results of the difference 

between mobility approximations (akin to Figure 2) for an oxygen atom with a 4-6-12 

potential interaction and for different ion-to-gas mass ratios. The Lennard Jones 

potentials for Oxygen used were 𝜎 = 3.043 Å and 𝜖 = 0.214668 𝑒−21𝐽. These results 

are expected to vary from hard sphere ones in particular for smaller mass ratios, while for 

larger mass ratios the values are expected to be qualitatively similar. 

One would like to test the results of the two-temperature theory for small ions in 

light gases with respect to experiments. This is shown in Figure 5F, where the reduced 

mobility of 𝑂+, 𝐻2𝑂
+ and 𝐶𝐻5

+ are shown as a function of 𝐸/𝑛 both numerically (4th 

approximation) using IMoS86-89 and experimentally in He23, 56. The program is available 

and free of charge (www.imospedia.com) and uses a parallelized interface to calculate 

reduced mobilities and CCS for different gases and fields up to the fourth approximation. 

Similar results for a variety of small ions are shown in a companion paper to this one1. It 

is clear that for the monoatomic ion, the two-temperature theory reproduces the 

experimental results quite accurately. For the polyatomic ions, the theoretical results 

follow the experimental curves quite well (given that the experimental results have a 7% 

error). Finally, for 𝐶𝐻5
+, all approximations are shown (one through four). Given that the 

mass ratio is about 4, it is expected that the largest differences between the 

approximations will occur at high fields. This is visibly the case in Figure 5F. The higher 

the approximation the closer the result is to the experimental values. One can also observe 

http://www.imospedia.com/


 

that the difference between the third and fourth approximation is rather small, hinting 

toward convergence. 

[Figure 5 near here] 

Conclusions 

This manuscript aims to provide a concise description of the two-temperature theory 

along with rigorous mathematical arguments behind its success at predicting the ion’s 

drift velocity in monoatomic gases at high fields. Moreover, a thorough procedure for 

obtaining the equations (including the matrix elements) for higher-order mobility 

approximations is also provided with high detail, making this work suitable for beginners 

and experts in ion mobility. The work itself tries to explain the suitability of the two-

temperature theory with concrete arguments of why the theory works and when it should 

be employed. The key takeaways of the manuscript can be consolidated as below: 

• The success of the two-temperature theory relies on the choice of a basis function 

with a base temperature (𝑇𝑏) related to the ion’s temperature and different from 

the gas temperature (𝑇). The base temperature starts as a parameter, but a relation 

between the temperature and the field over the concentration must be made at 

some point. 

• Different moments of the Boltzmann equation need to be solved to determine 

various transport properties, e.g., drift velocity (𝑣𝑑), energy, etc. The solution 

assumes that the collision operator may be written in terms of an infinite sum of 

orthogonal functions (Burnett) with coefficients that are known as matrix 

elements. Since the moments cannot be obtained without knowing the ion’s 

velocity distribution a priori, a recursive relation is sought, for which different 



 

approximations can be obtained from lower-order approximations, starting with 

the first.  

• Different successive approximations are dependent on complicated functions of 

the matrix elements. The matrix elements themselves are as well complicated 

functions of ratios of Collision Integrals. The explanation of how to calculate 

these matrix elements has been thoroughly explained in this manuscript, for the 

first time to our knowledge.  Full results are shown up to the third approximation, 

while numerically, up to the fourth approximation is calculated in IMoS. The 

expressions are written such that the off-diagonal terms get canceled if the 

Maxwell model is used. 

• A choice needs to be made for the base temperature. If the 3/2𝑘𝑇𝑏 is chosen to 

be equivalent to the ion’s energy, a relation may be calculated that relates 𝑇𝑏 to 

𝐸/𝑛 to different approximations, leading to a closed-form equation of the ion 

mobility. The method chosen here can accurately solve higher-order mobility 

equations almost instantaneously once the collision integrals are calculated, in 

contrast to other methods, which might take several minutes or hours. 

• The first approximation to the ion’s energy yields Wannier’s energy equation. 

This establishes that 3/2𝑘𝑇𝑏 can be related to the kinetic energy of the ion due to 

the field plus the translational energy at a temperature higher than that of the gas, 

due to collisional heating, and that it is labeled the effective temperature 𝑇𝑒𝑓𝑓. 

• The effect of higher-order approximations was tested for different 𝑀/𝑚 ratios 

first for the hard sphere case and then for a 4-6-12 potential. Interestingly, in all 

cases, the deviation in mobility between successive approximations was reduced, 

indicating convergence. Moreover, the two-temperature theory has been tested for 



 

monoatomic and polyatomic ions in Helium gas at high 𝐸/𝑛 showing excellent 

correlation with experimental results, further solidifying the hypothesis. 

• Several collision integral ratios of different ions (using a 4-6-12 potential) were 

calculated as a function of 𝐸/𝑛. For monoatomic and small polyatomic ions, the 

ratios were found to be similar to those of the Maxwell model at moderate fields 

(0-40 Td), and similar to those for of the hard-sphere model at high fields (i.e., 

approaching asymptotically at 1). For monoatomic or very small polyatomic ions, 

substituting the ratios for their Maxwell values may therefore yield acceptable 

results at low fields. However, it is not practical to utilize the Maxwell model for 

bigger polyatomic ions because the ratios deviate even at negligible fields. 

• For polyatomic ions in high 𝐸/𝑛, it is expected for collisions to be inelastic in the 

translational sense, meaning that some of the collisional energy is transferred to 

the internal degrees of freedom of both ion and gas molecule. For monoatomic 

gases, the inelasticity can be generally ignored because there is no mode of energy 

escape once the ion’s internal energy reaches equilibrium with the relative 

translational energy of collision, and the two-temperature theory stays valid. For 

polyatomic gases, however, some of the energy can always escape the system 

through the internal degrees of freedom of the gas, making the two-temperature 

theory less accurate with increasing fields. 
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Figures 

Figure 1 

 

Figure 1. Representation of a gas-ion trajectory in 3D. The gas molecule with the velocity 𝑔⃗ is being deflected by an 

angle 𝜒. The trajectory plane (blue) makes an angle 𝜖 with respect to a fixed reference plane (red). (Adapted from 

Vincenti and Kruger74, and Larriba and Prell9). 



 

Figure 2 

Figure 2. The percentage difference between the first and the higher order approximations (for the hard sphere model) 

as a function of the dimensionless parameter ℰ∗ at different mass ratios (A) 𝑀/𝑚 =  0.1, (B) 𝑀/𝑚 =  0.5, (C) 

𝑀/𝑚 =  1, (D) 𝑀/𝑚 =  4, (E) 𝑀/𝑚 =  100, (F) 𝑀/𝑚 =  1000. The y-axis is given by % 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 =

 
(〈𝑣𝑑〉𝑥−〈𝑣𝑑〉𝐼) × 100

〈𝑣𝑑〉𝐼
. Calculations were performed in IMoS 86-89. 



 

Figure 3 and 4 

 

Figure 3. CCS ratios for 𝑂+ ion in helium gas as a function of 𝐸/𝑛. The dashed and solid lines represent the CCS 

ratios for the Maxwell and 4-6-12 potential approximation model respectively.  

Figure 4. C* ratios for different ions in helium gas as a function of 𝐸/𝑛. The dashed line represents the C* ratio for 

the Maxwell model. The C* ratio becomes closer to 1 at low 𝐸/𝑛 as the ion size increases. 



 

Figure 5 

Figure 5. The percentage difference between the first and the higher order approximations (using the 4-6-12 Lennard-

Jones trajectory method) as a function of the dimensionless parameter ℰ∗ at different mass ratios (A) 𝑀/𝑚 =  0.1, 

(B) 𝑀/𝑚 =  0.5, (C) 𝑀/𝑚 =  1, (D) 𝑀/𝑚 =  4, (E) 𝑀/𝑚 =  1000. The y-axis is given by % 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 =

 
(〈𝑣𝑑〉𝑥−〈𝑣𝑑〉𝐼) × 100

〈𝑣𝑑〉𝐼
. Figure 5F shows the experimental and the calculated mobility for 𝑂+, 𝐻2𝑂

+ and 𝐶𝐻5
+ in helium as 

a function of 𝐸/𝑛. For 𝐶𝐻5
+, the mobility using different approximations is illustrated. Calculations were performed 

in IMoS 86-89. 
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